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Abstract—Modern heterogeneous computing platforms increas-
ingly unify CPU and GPU address spaces for improved
programmability and performance. To this end, recent Linux
kernels and NVIDIA GPU drivers adopt Heterogeneous Memory
Management (HMM), which allows GPU kernels to directly
access host memory. While this simplifies development, it may
introduce a critical security risk.

In this paper, we expose a new attack surface introduced by
HMM and present GHOST-ATTACK, the first GPU-originated
exploitation technique capable of compromising host process
memory. By exploiting memory-safety bugs in GPU kernels or
executing attacker-supplied kernels, GHOST-ATTACK enables
attackers to bypass Address Space Layout Randomization
(ASLR) and hijack control flow in widely used applications
such as PyTorch and Chrome.

To counter this threat, we further propose SHELL (Secure
HMM Enforcement with LLVM), a practical defense that
restores memory isolation between GPU and host in HMM-
enabled systems. SHELL statically identifies shared memory
regions and enforces fine-grained access control at runtime using
the GPU driver’s page-fault mechanism. We implement SHELL
by modifying Clang/LLVM and the open-source NVIDIA GPU
driver. Our evaluation demonstrates that SHELL effectively
blocks all variants of GHOST-ATTACK with negligible per-
formance overhead, preserving the security, compatibility, and
performance benefits of HMM.

1. Introduction

GPUs have evolved from dedicated graphics processors
to powerful parallel computing engines, driving advance-
ments in machine learning, scientific computing, and high-
performance applications. General-purpose GPU (GPGPU)
programming, which refers to the use of GPUs for tasks be-
yond traditional graphics rendering, has led to the ubiquitous
deployment of GPU-equipped systems. NVIDIA’s CUDA
platform, in particular, has been a pioneering force in making
parallel GPU programming accessible to developers [33].

However, the complexity of GPU programming has
driven the need for simplified memory models enabling
seamless CPU-GPU interaction. To address this, recent Linux
kernels and NVIDIA GPU drivers integrate Heterogeneous
Memory Management (HMM) [28], which unifies CPU and
GPU address spaces, allowing GPU kernels to directly access
host memory [37]. This significantly simplifies data sharing

and improves programming efficiency, as developers no
longer need to explicitly transfer data between CPU and
GPU memory.

With the widespread adoption of GPUs, security re-
searchers have focused on GPU security, primarily targeting
vulnerabilities within the GPU memory space. They focused
on memory-safety bugs—long standing vulnerabilities in
software systems—that can lead to data leaks, corruption,
or denial of service within the GPU context [41, 30]. In
response to these threats, NVIDIA has introduced tools to
detect and debug memory-safety bugs in GPU kernels, such
as the Compute Sanitizer [38] and cuda gdb [39]. With the
help of these tools, several memory-safety bugs have been
reported in NVIDIA’s kernel libraries [22, 26]. Moreover,
several studies have demonstrated that GPU memory-safety
bugs can be exploited to hijack the control flow of GPU
kernels and compromise GPU memory [19, 40, 20], leading
to data leaks or corruption. However, these previous attacks
were limited to the GPU memory and could not affect the
host code or memory directly.

This paper studies the security implications of HMM
supports in GPU. Specifically, while HMM improves pro-
grammability, it is vulnerable to a critical security attack,
which we call GHOST-ATTACK. GHOST-ATTACK is the
first GPU-to-host memory attack that exploits HMM to
compromise the host process. GHOST-ATTACK enables an
attacker to exploit GPU memory-safety bugs to directly affect
host code and memory, leading to arbitrary code execution
on the host. Since HMM is enabled by default in the latest
NVIDIA GPU drivers, even CUDA applications not designed
to use HMM can still be affected by GHOST-ATTACK [37].

By exploiting memory-safety vulnerabilities in GPU ker-
nels or submitting malicious GPU kernels, GHOST-ATTACK
demonstrates how attackers can break Address Space Layout
Randomization (ASLR), scan host memory, and then hijack
the control flow of host applications. We demonstrate that
GHOST-ATTACK can be practically mounted against real-
world applications, including PyTorch [12] and Chrome’s
GPU process [1], using either memory-safety vulnerabilities
in GPU kernels or attacker-supplied GPU kernels.

To mitigate this threat, this paper further proposes SHELL
(Secure HMM Enforcement with LLVM), the first practical
defense that restores memory isolation between GPU and host
in HMM-enabled systems. SHELL achieves this with a two-
phase approach: it (1) statically identifies legitimate shared
memory regions passed to the GPU, and (2) enforces fine-



grained runtime access control by leveraging existing page-
fault mechanisms. Importantly, SHELL requires no manual
changes to GPU applications or hardware. All protections are
transparently applied using a compiler-based instrumentation.
Moreover, it introduces minimal overhead by reusing existing
HMM mechanisms and enforcing access control only during
page faults, further optimized by 64KB-aligned allocations
to avoid sub-page sharing.

We evaluate SHELL against the ERAS dataset [3] pro-
cessing application developed by NVIDIA [4] to demonstrate
the effectiveness of HMM, and show that SHELL introduces
negligible overhead on end-to-end performance. Moreover,
SHELL uses jemalloc [5]-based memory pools to improve
memory allocation speed regard to ML/AI workloads, which
imposes a high memory pressure on the host memory. Our
evaluation shows that SHELL effectively blocks all variants
of GHOST-ATTACK while maintaining full compatibility
with existing CUDA applications. Moreover, SHELL imposes
negligible overhead: on both microbenchmarks and a real-
world HMM-enabled CUDA application, SHELL preserves
performance and even improves memory allocation speed
through the use of jemalloc-based memory pools.

Although HMM is not yet widely adopted due to its
recent introduction, major GPU vendors, including NVIDIA
and AMD, are all moving towards supporting HMM in their
GPU drivers and hardware. NVIDIA has already enabled
HMM by default in its latest GPU drivers, and AMD has
announced plans to support HMM in future releases [17,
37]. This trend is driven by the need for more ease of
memory management and programmability in heterogeneous
computing environments, especially in the context of machine
learning and Al applications, which imposes high memory
pressure on the host memory. Our work highlights the urgent
need to address the security implications of HMM, which
lacks security considerations in its usecases, and provides
a practical solution to mitigate the risks associated with
HMM-enabled systems.

The rest of this paper is organized as follows. §2 provides
backgrounds related to GPU software stacks and HMM
support. §3 presents GHOST-ATTACK, which gains a host
process’s privilege by compromising GPU kernels or sup-
plying attacker-controlled GPU kernels. §4 proposes SHELL,
which is an effective mitigation against GHOST-ATTACK. §5
describes the implementations of SHELL. §6 evaluates the
attack effectiveness of GHOST-ATTACK as well as security
and performance effectiveness of SHELL. §7 discusses the
alternative mitigations and future work of this paper, and §9
concludes the paper.

Open Science Policy. In support of open science and
reproducible research, we publicly released all our artifacts,
including proof-of-concept code for GHOST-ATTACK and
the implementation of SHELL at our public repository [18].

Responsible Disclosure. We first identified the
GHOST-ATTACK and security flaws in CUDA runtime on
April 17, 2025, and promptly reported them to NVIDIA
PSIRT on June 2, 2025. Our Initial submission included a
high-level description of how HMM and CUDA runtime can

be exploited by an attacker, followed by a proof-of-concept
code that demonstrates the attack on a vulnerable CUDA
kernel, and a prototype of SHELL.

2. Background

In this section, we provide background information on the
GPU and Heterogeneous Memory Management (HMM) [28].
First, we review the GPU software stack, which includes the
host program, the CUDA runtime library, the GPU driver,
and the GPU kernel (§2.1). Next, we introduce the GPU
programming model and its workflow, which is essential for
understanding how GPU kernels are executed (§2.2). We
then explain the GPU memory management, including the
traditional GPU memory management, the UVM, and the
HMM, which is a new memory management model (§2.3).

2.1. GPU Software Stack

The GPU software stack is composed of several com-
ponents that operate on both the host and GPU sides. The
host-side components run on the CPU, and manage GPU’s
execution, memory, and kernel launches, while the GPU-
side component runs on the GPU, and performs the actual
computation.

Host Program (Host-Side). The host program is a user-
space application developed by third-party developers who
wish to leverage GPU acceleration for their computations.
Common examples of the host program include deep learning
or machine learning frameworks such as PyTorch [12] and
TensorFlow [13]. These include various GPU kernels and
are built with libcuda-rt, both of which are explained next.

CUDA Runtime Library (Host-Side). The CUDA runtime
library (libcuda-rt) [33], provided by NVIDIA, serves as
an abstraction layer between the host program and the GPU
driver. It exposes high-level APIs to the host program, which
are then forwarded to the GPU driver. Leveraging this layer,
host programs can simplify its GPU programming—such as
managing GPU memory, GPU kernel launch, and other GPU
operations. Basically this libcuda-rt is a shared library,
so the host program dynamically links the library when
executed.

GPU Driver (Host-Side). The GPU driver provides low-
level interfaces and system-level control over the GPU
hardware. It provides low-level APIs utilized by libcuda-rt
for GPU resource management, including memory allocation,
kernel preparation, and execution. Furthermore, it coordinates
the transfer the GPU kernels to the GPU memory and the
execution of those.

GPU Kernel (GPU-Side). GPU kernels are functions
executed on the GPU hardware. NVIDIA provides a set of
optimized, closed-source GPU kernels (e.g., cuBLAS [32],
cuDNN [34], and cuFFT [35]). These kernels perform
specific computational tasks, such as linear algebra, image
processing, and machine learning. NVIDIA provides highly
optimized prebuilt GPU kernels so that host program de-
velopers can benefit from vendor-tuned performance. It is
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Figure 1: Overview of how NVIDIA GPU kernels are compiled
and executed.

also possible for host program developers to write their own
GPU kernels to support specialized computations that are
not covered by NVIDIA-supplied GPU kernels.

2.2. GPU Programming

Modern GPUs execute specialized programs to acceler-
ate parallel computations. Two key abstractions for these
programs are GPU kernels and shaders. GPU kernels are
commonly used in general-purpose GPU programming frame-
works like CUDA [33] or OpenCL [9], and shaders are used
in graphics APIs such as OpenGL [10] and Direct3D [2].
Although both run on the same underlying hardware, they
differ in their programming model, execution context, and
intended use cases. In this paper, we focus on GPU kernels,
particularly NVIDIA CUDA kernels, which are designed
for general-purpose computations and can be executed on a
wide range of data types and structures.

The overall process of compilation and execution of the
GPU kernel is illustrated in Figure 1. @ The programmer
writes the host code and the device code. Host code is a
C/C++ code that runs on the CPU as a user-level process,
responsible for managing the GPU resources, transferring
data between the CPU and GPU. Device code is a CUDA
C/C++ code that compiled to a device-executable format
(i.e., PTX [11] or SASS), and executed on the GPU. In
NVIDIA, the device code running on the GPU is called a
GPU kernel, which is a function that can be executed in
parallel by multiple threads. Both host and device code are
compiled by the NVIDIA CUDA compiler (NVCC [7]) into
a single executable. @ The executable consists of two parts:
the CPU binary and the GPU binary (fatbin). The CPU binary
are composed of the code and data that are executed and
accessed by the host. The GPU binary is a device-executable
format (i.e., PTX or SASS) that is executed on the GPU.
® When a user runs the executable, the loader loads the
CPU binary into the host process and begins execution. Once
executed, the host code calls the APIs of 1libcuda-rt, which
is dynamically linked to the host program. @ When the host
code calls GPU kernels, it invokes the cudalLaunchKernel
from libcuda-rt, which transfers the GPU binary to the
GPU memory and prepares the GPU kernel for execution
with support of the GPU driver. @ The interaction between

1 int main(Q) {

2 float *h_data;

3 h_data = (float *)malloc(SIZE);
4

5

float *d_data;

cudaMalloc((void**)&d_data, SIZE);

cudaMemcpy(d_data, h_data, SIZE, cudaMemcpyHostToDevice);
cuda_kernel<<<blockDim, threadDim>>>(d_data);

cudaMemcpy (h_data, d_data, SIZE, cudaMemcpyDeviceToHost);

9 o ¢
[ |

10
1+ cuda_kernel<<<blockDim, threadDim>>>(h_data);
12
13

14 }

Figure 2: A host program which uses CUDA, shown with diff-style
comparison before and after adopting HMM. Red-lines indicate
code written for pre-HMM version, while green-lines indicate new
code lines written for using HMM.

the host and the GPU is kept being managed by libcuda-rt
and the GPU driver, ensuring seamless communication and
efficient execution of GPU kernels.

2.3. GPU Memory Management

Traditional GPU Memory Management. Traditionally,
the host (CPU) and device (GPU) each had separate address
spaces, and every host-to-device transfer had to be manually
managed by the host program. In Figure 2, the code snippets
with the red-colored lines show the workflow of this legacy

GPU memory management. Specifically, a traditional host

program using CUDA performs the following steps for

memory management.

o Host Memory Allocation: The host program allocates the
host memory using standard C/C++ memory allocation
functions (e.g., malloc() or new) (line 2-3).

e GPU Memory Allocation: The host program re-
serves GPU memory using libcuda-rt APIs (i.e.,
cudaMalloc()). This API returns a device pointer (i.e.,
d_data). Since this pointer points to the GPU memory, it
cannot be used by the host code (line 5-6).

o Kernel Launch: The host program launches the GPU
kernel with passing the device pointer (d_data) to the
kernel function (line 8), and this pointer now can be used
in the GPU kernel to access the GPU memory.

o Kernel Execution: The GPU kernel is executed on the
GPU, and it operates on the data in the GPU memory.

o Data Retrieval: After the GPU kernel finishes the exe-
cution, the host program copies the data from the GPU
memory back to the host memory using libcuda-rt APIs
(i.e., cudaMemcpy()) (line 9).

As described above, CUDA memory management in-
volves complicated steps for developers, requiring explicit
memory allocation, data transfers, and synchronization be-
tween the host and device.

GPU Memory Management with UVM. Unified Virtual

Memory (UVM) in CUDA is a memory management model

that allows the host and GPU to share a single unified address

space. With UVM, the host program allocates memory
accessible to both the host and GPU using the explicit API
call cudaMallocManaged(), while all other memory regions



remain unshared between the host and GPU. The pointer
returned by cudaMallocManaged() can be directly used by
both host and GPU code. The data transfers between the host
and GPU and synchronization are automatically managed
by the GPU driver and CUDA runtime, thus reducing the
complexity of memory management for developers.

GPU Memory Management with HMM. Heterogeneous
Memory Management (HMM) [28], which is a kernel
framework in Linux, allows a device (e.g., GPU, FPGA,
and NIC) to access pages allocated in the host memory as if
it were part of the device’s address space. HMM is supported
by NVIDIA GPUs and their drivers, enabling a GPU kernel
to directly access host memory. HMM is designed to be
more seamless and efficient than UVM, making it superior
to UVM in terms of programmability. It simplifies host code
by allowing standard memory allocations (e.g., malloc(),
new, or stack allocation) to be directly accessible to the
GPU kernel. This offers the advantage in programmability
compared to UVM, which requires explicit allocation through
cudaMallocManaged(). Given these advantages, NVIDIA
recommends developers to use HMM for ease of program-
ming [37]. Figure 2 shows the HMM’s simplified memory
management workflow compared to the traditional GPU
memory management. With HMM, the code highlighted in
red is no longer needed, and line 9 is replaced with a simple
argument passing of the host pointer (i.e., h_data) as in line
11. NVIDIA GPU architectures now enable the HMM by
default since the open-source NVIDIA GPU driver version
r535_00+ with CUDA Toolkit version 12.2+ (which runs
Linux kernel 6.1.24+, 6.2.11+, or 6.3+) [37].

3. GHOST-ATTACK

In this section, we propose GHOST-ATTACK, the first

GPU-to-host attack that compromises host memory in-
tegrity through Heterogeneous Memory Management (HMM).
Specifically, we begin by showing how host-side ASLR can
be broken under HMM (§3.1), then explain how an attacker
can hijack the host program’s control flow (§3.2). Next,
we discuss the security consequences of GHOST-ATTACK
(§3.3). Finally, we present two realistic attack scenarios
that demonstrate the practical feasibility of GHOST-ATTACK
(§3.4).
Attack Model. We assume a heterogeneous system with
HMM enabled. The victim’s host program is a user process,
such as PyTorch or TensorFlow, that dynamically links
libcuda-rt to utilize GPU acceleration.

We consider two realistic attack vectors: (i) exploiting a
memory-safety vulnerability in a GPU kernel using crafted
inputs, and (ii) executing attacker-supplied GPU code in the
context of the host (i.e., via WebGPU [42] or HIPscript-like
APIs [27]). In both cases, the attacker first gains the privilege
of the GPU kernel context. Based on this compromised GPU
kernel, the attacker’s goal is to compromise the control flow
or data integrity of the host process.

Attack Overview. Although a compromised or ma-
licious GPU kernel can directly access host memory,
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Figure 3: Memory snapshot of a host process, showing how
GHOST-ATTACK breaks ASLR.

GHOST-ATTACK still requires to complete the following
two attacking tasks to successfully gain the privilege of the
host process. First, GHOST-ATTACK needs to bypass ASLR.
The attacker must first learn the layout of the host process’s
address space, which is randomized for security. Without this
information, any attempt to overwrite critical data structures
would likely crash the host process or fail silently. Second,
GHOST-ATTACK needs to hijack the control flow to gain the
host process’s privilege. Specifically, even after bypassing
ASLR, the attacker must find a writable control-relevant data
(such as a return address or a function pointer), which can
be used to redirect the execution flow.

The rest of this section describes how GHOST-ATTACK
carries out these attacks by exploiting one practical and
broadly applicable attack vector: the CUDA runtime library
(1ibcuda-rt). While GHOST-ATTACK can leverage multiple
attack vectors to corrupt host control flow, we focus here on
an attack that targets libcuda-rt because it is dynamically
linked by all CUDA-using host programs and thus is always
mapped into the host process’s address space. This choice
makes the attack broadly applicable to all CUDA-enabled
applications. Alternatively, one may define a targeted attack
vector tailored to the characteristics of a specific target system
instead of libcuda-rt, but general attack strategy would be
similar to this libcuda-rt attack

3.1. Breaking ASLR with libcuda-rt

GHOST-ATTACK breaks ASLR by exploiting multiple
design decisions in libcuda-rt that inadvertently exposes
critical memory layout information to the GPU. This attack
is based on the following three key characteristics of the host



// GPU kernel to break ASLR and leak addresses

1
2

3 __global__

4 void aslr_break_kernel() {

5 uint64_t nvidiactl_base = 0x200400000ULL;

6 uint64_t offset = 0x7ce8;

7 uint64_t *probe_object

8 = *(uint64_t **)(nvidiactl_base + offset);

10 uint64_t i = 0;
11 uint64_t *leak_object;

13 // find the object that contains the magic values

14 // 0x200000000 and 0x300200000

15 while(true) {

16 if (*(probe_object - i) == 0x200000000ULL) {

17 if(*(probe_object - i + 1) == 0x300200000ULL) {

18 leak_object = probe_object - ij;

19 break;

20 }

21 3

2 i++;

23 }

24

25 // read objects until it leaks the last mapping information
26 for(i = 0; *(leak_object + i) != Oxffffffffff600000; ++i) {
27 printf("leaked address: %lx\n", *(leak_object + 1i));

28 }

29 }

Figure 4: Pseudo GPU kernel code to break ASLR. The code is
translated into pseudo C-style for readability.

process’s memory, all of which are related to the runtime
behavior of libcuda-rt.

« Fixed Mapping for nvidiactl device When a GPU kernel
is launched, libcuda-rt maps the nvidiactl device into
the host process’s address space at a fixed virtual address.
This region is used for communication between the host
and GPU. Crucially, libcuda-rt maps this region to the
same virtual address across executions. This behavior
violates a fundamental principle of ASLR, as it provides
a reliable anchor to begin the search of other host-memory
regions’ addresses.

« A Heap Pointer placed at the Fixed Offset. An attacker
can locate the heap region by reading a pointer stored at
a fixed offset within the nvidiactl-mapped region. Our
analysis confirms that this pointer consistently references
the host process’s heap, enabling computation of other
heap addresses. Specifically, at the fixed offset Ox7ce8
from the nvidiactl-mapped region, a 64-bit pointer
always points to a probe-object, which is located in
the process’s heap (the same heap used by the host for
all allocations).

« Host Address Layout Information in Heap Analyzing
the data within the heap, we found that a certain data
structure, which stores the base and end addresses of all
memory sections in the host process, including text, data,
heap, stack, and shared libraries. Our further analysis
identified that this memory layout structure in the heap
is initialized and managed by libcuda-rt to facilitate
low-level resource accesses when operating with the
GPU driver. By parsing this structure, the attacker can
reconstruct the full memory layout of the host process,
effectively bypassing ASLR.

Together, these memory characteristics of the host process

allow a compromised or malicious GPU kernel to determinis-
tically locate and leak the memory layout of the host process
with no guesswork or brute force. The combination of a
fixed anchor, stale heap pointer exposure, and rich address
information metadata makes libcuda-rt an ideal target for
ASLR bypass. Even in the absence of libcuda-rt, a host
process generally passes pointers (holding a host address)
to GPU kernels as arguments in HMM scenarios, resulting
in the host address leakage. This makes the attack broadly
applicable to any host program (beyond libcuda-rt) that
employs HMM.

Workflow of ASLR Bypass. In order to clearly illustrate
how this ASLR bypass can be carried out by the GPU kernel,
we provide details of the attack flow. The memory snapshot
throughout the attacking process is shown in Figure 3 and
C-like attack pseudocode is listed in Figure 4. First, from
the fixed nvidiactl-mapped address, the GPU kernel first
determines the address of a pointer (i.e., 0x200407ce8),
which is located at the fixed offset from the fixed nvidiactl-
mapped region (@ in Figure 3 and line 5-6 in Figure 4.).
Then it dereferences this pointer, which yields the pointer of
the probe-object (@ and line 7-8). Next, it scans below the
probe-object address to identify a leak-object that begins
with a 16-byte magic value (€ and line 15-23). Finally, it
extracts the host memory layout information (@ and line
26-28).

// GPU kernel to overwrite a return address on the stack

1
2

3 __device__

4 void return_address_overwrite_payload() {

5 // Break ASLR, and leak the libcuda base

6 size_t libcuda_base = find_libcuda_base();

7 // return address to overwrite

8 size_t return_addr = libcuda_base + 0x25f701;

9

10 // Scan the stack to locate the target return address
11 size_t target_addr = scan_stack(return_addr);

12

13 // Scans host address space to find the gadget

14 uint64_t gadget_addr = find_gadget_addr(Q);

15 // Overwrite the target return address with the gadget address
16 “(uint64_t *)target_addr = gadget_addr;

17 }

(a) GPU kernel code that overwrites return address.

// GPU kernel to overwrite libcuda GOT entry

1
2

3 #define GADGET_OFFSET (OxXXXXXX)

4 #define FREE_OFFSET (0x25f701)

5

6 __device__

7 void GOT_overwrite_payload() {

8 // Break ASLR, and leak the libc & libcuda base

9 size_t libc_base = find_libc_baes(Q);

10 size_t libcuda_base = find_libcuda_base();

11

12 // Set Gadget address to overwrite (gadget_addr)
13 size_t gadget_addr = libc_base + GADGET_OFFSET;

14 // Set GOT entry to be overwritten (target_addr)
15 size_t target_addr = libcuda_base + FREE_OFFSET;
16

17 *(uint64_t *)target_addr = gadget_addr;

18}

(b) GPU kernel code that overwrites GOT entry.

Figure 5: GPU kernel code to hijack control flow of the host
program.



3.2. Hijacking Host Control-Flow

After bypassing ASLR, now we describe how the GPU
kernel can leverage HMM to hijack the host process’s control
flow by overwriting critical data structures, such as return
addresses and function pointers. We first describe the attack
with overwriting return addresses, and then show how to
overwrite function pointers in the Global Offset Table (GOT)
to achieve arbitrary code execution in the host context.

Overwriting Return Addresses of libcuda-rt. First, we
explain how a compromised GPU kernel can overwrite
return addresses in the host process (shown in Figure 5a).
After defeating ASLR and learning the host’s memory
layout, the GPU kernel can locate the host’s stack region.
However, it introduces a challenge in locating the valid
return address of the host program, because randomly
overwriting stack data risks crashing the host, which is
undesirable for the attacker. To address this, we leverage
the fact that the host program waits for the GPU kernel
to finish its execution via cudaDeviceSynchronize(). When
cudaDeviceSynchronize() is called, it calls a sequence of
libcuda-rt functions that eventually invoke a blocking loop
that waits for the GPU kernel to finish execution. The
libcuda-rt function that runs the blocking loop stores the
return address, whose value is the address of 0x25f701 offset
from the base address of libcuda-rt, in the host stack. From
the GPU kernel, we can scan the stack region of the host
process to find this unique return address value (line 6-11 of
Figure 5a). Once the GPU kernel locates the target return
address, attacker can overwrite it (and any subsequent stack
slots) with attacker-controlled values and gadget addresses
taken from the host program’s executable section. When
the blocking loop in libcuda-rt is finished, it returns to
the attacker-controlled address instead of the original return
address.

Overwriting GOT of libcuda-rt. The second method to
hijack the host’s control flow is to overwrite function pointers
in the Global Offset Table (GOT) of 1ibcuda-rt. libcuda-rt

is built with partial RELRO, which leaves the GOT writable.

Thus, the compromised GPU kernel can overwrite GOT to

hijack the control flow as follows (shown in Figure 5b).

First, the GPU kernel leverages HMM to write directly to
the GOT entry of a chosen function (e.g., free()). Next,
once libcuda-rt invokes the function which relies on the
overwritten GOT entry, the control-flow would be redirected
the entry to the attacker-overwritten address, achieving
arbitrary code execution in the host context. Figure 5b shows
the example C-style pseudocode of the attack, where the
GPU kernel overwrites the GOT entry of free() to redirect
execution to an attacker-controlled address. It first breaks
ASLR, and then identifies the base address of libcuda-rt
and the libc (line 9-10). Then, it calculates the gadget
address from the libc base, and the target address (i.e.,

address of free() in libcuda-rt GOT entry) to overwrite.

Finally, it overwrites the GOT entry of free() in libcuda-rt
GOT entry with the attacker-controlled gadget address (line
17).

3.3. Security Consequences

Traditionally, GPU kernels are considered less privileged
than the host process, with limited capabilities and no
direct access to host memory. However, GHOST-ATTACK
enables the GPU kernel to compromise the host memory,
leading to severe security consequences. First, it breaks
host ASLR. Second, it can hijack the host’s control flow
and achieve arbitrary host code execution using only a
GPU memory bug. Host code execution is significantly
more dangerous than GPU kernel-only execution because
the host can access sensitive data and privileged system
resources. Thus, GHOST-ATTACK can lead to severe security
consequences.

Host Privilege Escalation. Once the attacker achieves host
code execution, they can execute a chain of system calls to
exploit vulnerabilities in the host kernel. For example, CUDA-
enabled applications often have direct access to GPU driver
APIs (e.g., ioctl()) even when running in a sandboxed
environment. If a vulnerability exists in the GPU driver, an
attacker who controls the host can use that functionality to
gain kernel-level privileges.

Exfiltration of Sensitive Data. Host code execution allows
the attacker to read sensitive data from the host process.
Whereas GPU memory corruption within a GPU kernel is
limited to data present in GPU memory during that GPU
kernel’s execution, host code execution lets the attacker read
and copy arbitrary data from the host process’s memory.
It includes data not mapped into GPU memory and data
beyond the lifetime of the compromised GPU kernel. For
example, in a cloud ML service (e.g., ChatGPT, Gemini,
etc.), persistent control of the service could allow an attacker
to exfiltrate other clients’ inputs (images, text) and model
data which are otherwise out of reach for compromised GPU
kernels. This capability is especially dangerous in multi-
tenant deployments, where sensitive data from different users
may be co-located in the same host process.

3.4. Real-world Attack Scenarios

We present two real-world attack scenarios that demon-
strate how a GPU kernel, which is compromised or attacker-
supplied, can break ASLR and hijack control flow in the
host process through HMM. Both attacks first defeat ASLR
by exploiting design issues in the CUDA runtime library and
then overwrite critical control data to redirect execution to
attacker-controlled code. We confirmed that both attacks
successfully changed the host instruction pointer to an
attacker-supplied address.

3.4.1. Exploiting Vulnerable GPU Kernels in PyTorch.

This attack shows how to exploit the popular deep learning
framework, PyTorch. This attack is built on two assumptions:
(1) PyTorch uses a GPU kernel that contains a memory-
safety vulnerability, such as a buffer overflow, and (2) the
attacker is a client of an inference service implemented with
PyTorch. These assumptions reflect real-world deployments.
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Figure 6: Attack scenarios that demonstrate how GHOST-ATTACK
obtain host process’s control-flow through HMM.

PyTorch relies on precompiled GPU kernels for performance,
and user-supplied input tensors are routinely offloaded to
the GPU for inference. Figure 6a illustrates the attack on
vulnerable GPU kernels. To exploit this setting, @ attacker
should craft an input that includes two components: (1) data
that triggers the vulnerability in the GPU kernel, and (2) a
payload containing attacker code written in GPU ISA (i.e.,
SASS). @ When this input is processed, the vulnerable GPU
kernel triggers the buffer overflow, allowing us to overwrite a
control-flow relevant data structure, such as a function pointer
or a return address in the GPU memory. €@ Vulnerability
trigger overwrites this data with the address of our injected
payload. It results in the GPU kernel executing the attacker’s
code, transferring control to the attacker-controlled GPU
code. @ Attacker’s payload then performs a two-stage
attack. First, it breaks ASLR by exploiting design flaws
in libcuda-rt, as described in §3.1. Then, using the leaked
address layout information, it overwrites a return address
stored by cudaDeviceSynchronize() in the host stack, or a

libcuda-rt’s GOT entry, with an attacker’s gadget address.

Once the corresponding function is invoked on the host,
control flow is hijacked, demonstrating that a memory bug
in a GPU kernel can be escalated to full code execution on
the host.

3.4.2. Exploiting Attacker-Supplied GPU Kernels. This
attack demonstrates that even without kernel vulnerabilities,
an attacker can compromise the host process if it allows
execution of attacker-supplied GPU code. Although the
current remote GPU execution APIs (i.e., WebGPU / WebNN
in Chrome) [42, 15] do not support NVIDIA CUDA, we
assume that future APIs will allow execution of GPU kernels
written in CUDA. If attacker-supplied GPU kernel is executed

in the victim’s machine, the attacker GPU kernel can leverage
HMM to directly read and write the victim’s host memory,
bypassing traditional isolation guarantees. This scenario is
illustrated in Figure 6b. @ The attacker uploads a malicious
GPU kernel to a service (i.e., a website or cloud GPU job
API), and waits for the victim to load it. @ The victim’s host
program receives the attacker-supplied kernel, and @ loads
it into the GPU for execution with support of underlying
GPU support framework (i.e., WebGPU with CUDA). (1)
The GPU kernel uses HMM to access host memory, scanning
for critical data structures such as return addresses, function
pointers, or GOT entries in host programs, and overwriting
them with attacker-controlled values.

4. Mitigation: SHELL
4.1. Problem Analysis and Design Overview

Problem Analysis. The key security problem of HMM is
that the GPU kernel has the same level of access to host
memory as the host program. This means that the GPU
kernel can access more of the host’s virtual address space
than is actually necessary for correct execution of the GPU
kernel. However, this excessive exposure is unnecessary, as
the GPU kernel do not need the same level of access to host
memory as the host program itself. More precisely, the host
address space consists of the following three categories of
memory.

o Host-only data is allocated in the host memory and
accessed only by the CPU (e.g., private host buffers or
host control-flow data).

e GPU-only data is allocated in the GPU memory
and accessed solely within GPU memory (e.g., via
cudaMalloc()).

o Shared data is allocated in the host memory but in-
tentionally shared with the GPU (e.g., passed as kernel
arguments).

HMM’s security flaw is that it does not enforce any
boundaries among these categories. Specifically, GPU kernels
should only access GPU-only data and shared data. The
host-only data should never be accessible to GPU kernels.
If allowed, it breaks the security boundary between CPU
and GPU, as we have demonstrated in $3.

Design Overview. To address this problem, we pro-
pose SHELL (Secure HMM Enforcement with LLVM), a
lightweight system that enforces access control over GPU-
initiated memory accesses. Specifically, SHELL aims at
preventing GPU kernels from accessing to host-only data.
As such, SHELL ensures that GPU kernels only access
shared data and GPU-only data.

SHELL enforces memory isolation through a two-phase
design: (1) Static phase, which identifies legitimate regions
of shared data using compiler instrumentation; and (2)
Runtime phase, which enforces access control in a GPU
driver to validate memory accesses. Static phase is done by
instrumenting the host code with Clang/LLVM, designed to
be compatible with existing GPU programming practices,
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Figure 7: Access control enforcement in HMM-enabled systems before and after employing SHELL. The left shows the baseline system,
where the GPU kernel can access all host memory due to insufficient isolation. The right shows the system after applying SHELL, which
modifies the GPU driver’s page fault handler and enforces isolated migration blocks to confine shared data, ensuring fine-grained access

control.

requiring only a slight modification (i.e., customized flag
in the mmap() for shared data allocation) to the host code
and no changes to the GPU kernel code. Runtime phase is
implemented in the NVIDIA GPU driver, which intercepts
GPU-triggered page faults and checks the faulting address
against the precomputed whitelist of shared data regions,
which is maintained in the SHELL table and updated by the
instrumented host code.

4.2. Static Instrumentation for Identifying Shared
Data

To enforce secure and precise access control, SHELL must
accurately identify memory regions of shared data, which
are intentionally shared between the host and GPU. A key
observation is that all the address information of shared data
should be handed over to the GPU kernel through CUDA
APIs. This is because shared data regions are allocated by
the host, and thus GPU kernels can only access them if
the host explicitly provides their address information. We
analyzed CUDA APIs, and found that cudaLaunchKernel ()
is the only API used to pass the shared data address.

SHELL leverages this insight to instrument host programs
to identify shared data. Using Clang/LLVM, we implement
a pass that instruments all cudaLaunchKernel () invocations
in the host code. These instrumented code first collects all
information regarding shared data regions, including its
base address and size. Then this information is sent to the
GPU driver to update SHELL table, a per-kernel whitelist of
authorized GPU-accessible regions.

Importantly, these shared data regions are not inferred
from GPU kernel’s memory accesses but are explicitly
derived from host-side code. This approach eliminates acci-
dentally identifying shared data regions from compromised
or attacker-provided GPU kernels.

4.3. Runtime Enforcement with Two-Tiered Access
Control

SHELL enforces its access control policy at runtime using
light-weight yet robust two-tiered access control mechanisms,
which integrates coarse-grained page fault handling with
fine-grained allocation constraints. These two mechanisms
work together to ensure that GPU kernels can only access
shared data and GPU-only data, while preventing access
to host-only data.

4.3.1. Coarse-Grained Enforcement via Page Faults.
We built SHELL’s coarse-grained access control on top of
the existing Heterogeneous Memory Management (HMM)
support in the NVIDIA GPU driver. This section first explains
how original HMM works on page migration and then
describes how SHELL extends it to enforce access control
over host memory using page faults.

HMM'’s Page Migration for Shared Data. As shown in
Figure 7a, when a GPU kernel accesses host memory under
HMM, there can be the following four cases: (i) accessing
the page of gpu-only data (Case [G]), (ii) accessing the page
of shared data (Case [S]), (iii) accessing the page of host-
only data (Case [H]), and (iv) accessing an unmapped page
by the host (Case [U]). @ In all these four cases, the GPU
kernel accesses with a virtual address, and the address is
delivered to the Graphics Address Remapping Table (GART).
The GART translates the virtual address used by the GPU
kernel to the physical address in the GPU memory, similar
to the MMU in the CPU. @ If the address is mapped to
the GPU memory ((G)), the GART successfully translates the
address, and the GPU kernel can access the page in the GPU
memory. @ If the address is not mapped to the GPU memory
(S, [H], or [U)), the GART raises a page fault, which is then
delivered to the GPU driver running in the host kernel space.
© In case of unmapped page (U)), the GPU driver denies



the page migration, and the GPU kernel cannot proceed.
In case of host-only data (HJ) and shared data ([S]), the
GPU driver serves the page fault by migrating the page
from the host memory to the GPU memory. @ There is no
isolation between shared data and host-only data. Thus,
when the pages are migrated, they contain both shared data
and host-only data without any separation, causing both
types of data to reside together on the same page during the
migration ([S] and [H)). @ After the page migration, the GPU
driver updates the GPU page table in the GART, allowing
the GPU kernel to access the migrated page in the GPU
memory (S| and [H)).

Enforcing Coarse-Grained Access Control. Figure 7b
illustrates how SHELL extends the HMM’s page migration
mechanism to enforce access control over host memory.
@-® The GPU kernel under SHELL still accesses the
memory using a virtual address, and GART translates the
address to the physical address in the GPU memory in
case of gpu-only data ((G]), or raises a page fault in case
of shared data (S]), host-only data ([HJ), and unmapped
page (U). @ In order to prevent the host-only data from
being migrated, SHELL only migrates the page for the case
of accessing shared data ([S]), and denies to migrate for
cases and [U]. @ In the case of [S|, SHELL migrates
the pages from the host memory to the GPU memory,
ensuring that serving pages contain only shared data and not
host-only data with fine-grained enforcement mechanism,
which we will explain in the next subsection. @ After the
page migration, the GPU driver updates the GPU page table
in the GART, allowing the GPU kernel to access the migrated
page in the GPU memory ((S)).

4.3.2. Fine-Grained Enforcement using Isolated Block.
While this GPU page-fault based coarse-grained access
control successfully prevents the block migration of ma-
jority cases, we found that this design alone has sub-page
security issue [16]. Specifically, the NVIDIA GPU drivers
handle GPU page fault in 64KB granularity, meaning that
the faulting address of low 16-bits are masked out. As
a result, if host-only data and shared data are placed
in the same 64KB block region, the page fault due to
accessing host-only data would be allowed by SHELL and
thus migrated.

In order to address this sub-page security issue, SHELL
further enforces fine-grained access control, ensuring that all
shared data are placed in its isolated migration block. As
a result, shared data and host-only data are not placed
together in the same 64KB of migration block, thus pre-
venting sub-page vulnerabilities. To this end, SHELL first
performs the static analysis to identify all variables used
as shared data. Specifically, it performs the backward
use-def analysis starting from the pointer argument of
cudaLaunchKernel ().

Depending on allocation types, SHELL ensures to
place shared data variables in the isolated page as fol-
lows (illustrated in Figure 8). (i) To secure global vari-
ables (i.e., Main Data section), SHELL maintains addi-
tional Shared Main Data region, which is aligned as 64KB
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Figure 8: Memory snapshots illustrating how SHELL allocates
shared data in isolated migration blocks to enforce fine-grained
access control. The left shows the memory layout before applying
SHELL, and the right shows that after applying SHELL.

and isolated from the Main Data region. Then SHELL
places all global shared data variables in this isolated
Shared Main Data region, which is instructed in the static
instrumentation phase. (ii) To secure heap variables, SHELL
maintains additional allocation pool (i.e., Shared Heap)
dedicated to shared data, where the underlying memory
page for the allocation pool is aligned as 64KB. Then
all the memory allocation invocations for shared data are
instrumented to be allocated from this dedicated pool, and
the host-only data is allocated from the default pool. (iii)
To secure stack variables, SHELL transforms all stack-based
allocations into heap-based allocations within a dedicated
shared data memory pool. Specifically, for each stack
shared data variable, SHELL replaces its declaration with
an equivalent malloc invocation in the function’s prologue,
and inserts a corresponding free invocation in the function’s
epilogue. By enforcing three types of memory allocation to
be identified between shared data and host-only data and
placing them in isolated pages, SHELL prevents sub-page
vulnerabilities.

5. Implementation

We  implemented  SHELL’s  pre-processor  in
LLVM/Clang [6], and the access controller in the
NVIDIA GPU driver. This section describes how we
implemented SHELL in the Clang and NVIDIA GPU driver.

5.1. Implementation of Pre-processor

Customized mmap. We also customized mmap to allocate
shared data that is allowed to be accessed by both the
host and GPU kernel. SHELL provides the MAP_HMM flag
to specify whether the memory is mapped as shared data
or not. We overrode the mmap function to our customized
mmap, which receives a 64-bit flag. If the MAP_HMM flag is set,



void* custom_mmap( ..., size_t size, uint64_t flag, ... ) {
if (flag & MAP_HMM) {
size = pad_to_64KB(size);
void *addr = real_mmap(..., (int)flag, ...);
params = {.base = addr,
.size = size,};
ioctl(fd, SET_HMM_TABLE, NULL);
} else {
return real_mmap(..., (int)flag, ...);
}
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}
Figure 9: Customized memory mapping with SHELL.

- int global_arrayl[SIZE1];

- int global_array2[SIZE2];
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int main() {

9 // Allocate shared data region for global variables

10 alloc_address = (char *)mmap(®, MAXSIZE, ..., MAP_HMM, ...);
11 global_arrayl = (int *)mmap(alloc_address, SIZE1l, ...);

12 alloc_address += SIZE1;

13 global_array2 = (int *)mmap(alloc_address, SIZE2, ...);

14 alloc_address += SIZE2;

15 }

+ o+ o+ o+ o+

(a) Instrumentation for global variable.

int heap_malloc() {

- int *array = (int *)malloc(SIZE);

+ int *array = (int *)mallocx(SIZE, NEW_ARENA);
}

N

(b) Instrumentation for malloc.

int stack_allocation() {

- int array[SIZE];

+ int *array = (int *)mallocx(SIZE, NEW_ARENA);
}

int function_epilogue() {
+ free(array);

}

(c¢) Instrumentation for stack allocation.

1 int memory_mapping() {

2 - int flag = MAP_PRIVATE | MAP_ANONYMOUS;

3 - int *array = (int *) mmap( ..., flag, ... );

4 + uint64_t flag = MAP_PRIVATE | MAP_ANONYMOUS | MAP_HMM;
5+ int *array = (int *) custom_mmap( ..., flag, ... );

6

(d) Instrumentation for memory mapping.

Figure 10: Instrumentation for host code with SHELL.

the customized mmap allocates memory in 64KB granularity,
with 64KB alignment, and the base address and size of the
allocated memory are passed to the GPU driver through ioctl
to update the SHELL table.

Host Code Instrumentation. SHELL identifies the
shared data that is accessed by both the host and GPU
kernel by examining the arguments passed to the GPU kernel
with backward data flow analysis of use-def chains. Figure 10
shows the instrumentation for the host code to track the
pointers passed to the GPU kernel. SHELL instruments all
memory allocation instructions that are possibly used by
the GPU kernel to update whitelists of shared data in the

access controller. For more details, the pass instruments the

following things in the host code:

« Global Variables: As shown in Figure 10a, all global
variables that are used as arguments to the GPU kernel are
instrumented to be allocated in a separated memory region
mapped with MAP_HMM flag. First, the memory region is
allocated with mmap with MAP_HMM flag for the shared data
in global variable (line 10). Then, all global variables are
instrumented to be mapped inside the memory region
allocated by mmap, storing each global variables without
internal fragmentation (line 11-14).

o Heap Allocation (malloc): All possible malloc that
are used to allocate shared data are instrumented to
use mallocx instead of malloc as shown in Figure 10b.
mallocx is a heap allocation API from jemalloc, which
allocates memory in a separated memory arena. The region
of separated memory arena used by mallocx is regarded
as shared data, and the base address and size of the
jemalloc memory arena is passed to the GPU driver in
the initialization phase of the jemalloc memory arena.

o Stack Memory Allocation: As shown in Figure 10c,
the stack memory allocation is instrumented to the heap
allocation with mallocx, which allocates memory in a
separated memory arena for shared data. At the epilogue
of the function, which destroys the stack frame, dallocx
is called to free the memory allocated by mallocx which
is instrumented from the stack allocation.

e Memory Mapping: As shown in Figure 10d, the memory
mapping is instrumented to use the customized mmap with
MAP_HMM flag if the memory is used as shared data.

5.2. Implementation of Access Controller

SHELL table, which tracks the base address and size
of the shared data that is needed by the GPU kernel. The
table is kept per process, and each table’s entry is updated
by the instrumented host code, calling the ioctl to the
GPU driver. SHELL table maintains the base address and
size of the region of shared data that is used by both the
host and GPU kernel. In the initial phase of the process
launching a GPU kernel, the SHELL table corresponding
to the process is initialized with zeroized entries, and the
range of the region for the heap and data segments reserved
for the shared data is updated to the SHELL table. While
the process is running, new SHELL entries are added to the
table when the host code allocates memory for shared data
using the mmap function with MAP_HMM flag, and marked as
invalid when the corresponding memory pages are unmapped.
Entries for the shared data’s stack and data segments live
for the lifetime of the process, serving as a whitelist for the
shared data in the stack and data segments.

6. Evaluation

This section evaluates our attack’s feasibility (§6.1) as
well as the mitigation effectiveness of SHELL (§6.2) against
the attack and its performance overhead (§6.3).



// libcuda_example.cu
// nvcc -Xcompiler -fPIC -shared -G -arch=sm_80

__device__
void device_code(float *data)

{
}

// normal device code
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9
10 // CUDA kernel code

11 __global__

12 void device_kernel(int len, char *h_req_id, float *data)
13 {

14 char d_req_id[16] = {0};

15

16 // function pointer to be overwritten

17 void (*operation)(float*) = device_code;
18

19 // if len > 16, it overwrites the function pointer
20 for(int i = 0; i < len; i++)

21 {

22 d_req_id[i] = h_req_id[i];

23 }

24

25 operation(data);

26

27 }
Figure 11: Simplified code for victim’s vulnerable GPU kernel

Evaluation Setup. All attacks were carried out on Ubuntu
22.04 LTS (Linux kernel 6.8.0) with an Intel Core i7-14700K
CPU and an NVIDIA RTX 4060 GPU. We used the open-
source NVIDIA driver version 570, and CUDA version
12.8 to test our attacks and mitigation. In §6.1, we used
Python version 3.12 as a victim process to demonstrate the
attack. In order to demonstrate exploitation with attacker-
controlled GPU kernel, we embedded the attacker’s malicious
GPU kernel into the Chrome (version 138.0.7191) WebGPU
platform directly, as the current Chrome WebGPU does not
support general-purpose GPU kernels.

6.1. Attack on HMM-enabled GPU Kernel

Exploit vulnerable GPU kernel. We embedded a vulnerable
GPU kernel function in PyTorch (which is similar to the
known PyTorch vulnerability [19]), and the victim runs
this vulnerable GPU kernel by calling PyTorch’s API to
perform basic matrix operations on the GPU. If the victim
uses PyTorch’s API to perform matrix operations on the
NVIDIA GPU, PyTorch loads the vulnerable GPU kernel
and CUDA runtime library (libcuda-rt) to run the GPU
kernel. As shown in Figure 5, the attacker can use this
vulnerability to leak the address space layout of the host
process, and overwrite the control-flow relevant data, such as
the return address or the libcuda-rt’s GOT entries. Figure 11
illustrates a simplified code of the vulnerable GPU kernel,
which is a simplified version of the vulnerable GPU kernel in
the PyTorch framework. The vulnerable GPU kernel copies
len bytes from a host pointer (h_req_id) into a fixed-size
buffer (d_req_id), enabling the attacker to overwrite the
function pointer (operation). The GPU device code serves
basic matrix operations, which are commonly offloaded
to GPU in machine learning applications. Redirecting the
pointer (operation) to an attacker-controlled payload causes
the GPU kernel to execute the attacker’s code.

We began by generating a payload: we compiled the
attacker’s GPU device code into a GPU executable (i.e.,
SASS) and embedded it into the input data (i.e., typically
an image or text used in machine learning applications). We
then triggered the vulnerability by passing a large len value
to the vulnerable GPU kernel, which causes the GPU kernel
to copy more bytes than the size of the buffer (d_req_id),
and overwrite the operation pointer with the address of the
attacker’s payload. It successfully diverts the control flow of
the victim GPU kernel to the attacker’s payload, executing
the attacker’s code on the GPU. The attacker’s payload is
designed to overwrite the GOT entry of the free function in
the victim process to the address of a gadget that calls the
system. As the address space layout of the victim process is
leaked by the GPU kernel, the attacker can manipulate the
argument passed to the system function to execute arbitrary
commands in the victim’s system. We successfully executed
this attack, demonstrating that HMM-enabled GPU kernels
can indeed corrupt host memory and hijack control flow.

Exploit with attacker-controlled GPU kernel. We tested
our attack on the Chrome WebGPU platform, which allows
attacker-controlled GPU code to be executed on the GPU.
However, as the current WebGPU implementation does not
support general-purpose GPU kernels, we embedded the
attacker’s GPU kernel into the Chrome WebGPU platform
directly to test our attack on Chrome’s highly sandboxed
WebGPU environment. We first programmed a GPU kernel
that leaks the address space layout of the host Chrome
GPU process, and then find the address of the libcuda-rt’s
GOT entry of the free function and overwrites it with
the address of a gadget that calls the ioctl function. We
then embedded this GPU kernel into one of the existing
rendering functions in the Chrome WebGPU platform, which
is executed when the victim Chrome visits a specific website
that uses WebGPU. We waited for the victim Chrome to
visit the specific website and execute the attacker’s GPU
kernel, which successfully leaked the address space layout
of the host Chrome GPU process, including the address
of the libcuda-rt’s GOT entry of the free function. As
Chrome does not blacklist the ioctl function in its GPU
process sandbox, we executed arbitrary ioctl commands
with overwriting the libcuda-rt’s GOT entry. It can further
lead to triggering vulnerabilities in the GPU driver, which can
result in serious consequences, such as privilege escalation.

6.2. Preventing GHOST-ATTACK with SHELL

Preventing exploitation of vulnerable GPU kernel. We
compiled the vulnerable GPU kernels with SHELL’s instru-
mentation and executed the exploit code that triggers the
vulnerability in the victim’s GPU kernel, and this GPU kernel
is executed by the victim’s PyTorch framework. Although
SHELL cannot prevent the vulnerability in the GPU kernel
from being exploited and the attacker’s payload from being
executed on the GPU kernel, it successfully prevents the
attacker’s payload from accessing the host-only data. It
blocks attacker’s attempts to leak the address space layout of



TABLE 1: Latency (in seconds) for running the ERAS processor
application, comparing application using jemalloc (mallocx) versus
SHELL-instrumented allocator. The last column shows total time
overhead relative to the baseline (%).

Scheme Elapsed Time (s) Relative to Baseline (%)
baseline 3.1088 100.0 %
SHELL 3.1398 100.9 %

the victim process, as the attacker’s payload cannot access
the host-only data that contains the address mapping infor-
mation of the victim process. Even if the attacker knows the
address of the libcuda-rt’s GOT entry, it cannot overwrite
any host-only data in the victim process, as SHELL strictly
separates the shared data from the host-only data, and
restricts the GPU kernel from accessing the host-only data.

Preventing exploitation of attacker-controlled GPU kernel.
As Chrome’s GPU kernel launching is not yet supported, how
to integrate SHELL into the Chrome WebGPU platform is
still an open question. We assumed that the future WebGPU
platform launches the GPU kernel with a dedicated GPU
kernel launching module, which is similar to the current
WebGPU implementation for supporting GPU shaders. We
applied our SHELL’s instrumentation to compile our dedi-
cated GPU kernel launching module, and tested the attack
on the Chrome WebGPU platform. It blocks all attempts to
access the host-only data from the attacker-controlled GPU
kernel, as the SHELL’s access control mechanism prevents
the GPU kernel from accessing only shared data regions.

6.3. Performance Evaluation on SHELL

We evaluate the performance overhead of SHELL in
two aspects. First, to understand its end-to-end performance
impacts, we evaluate SHELL using a real-world application
that uses HMM feature. Second, we break down the perfor-
mance overhead by each component of SHELL, including
the instrumented allocator and the runtime access control
mechanism. We repeated each experiment 100 times and
reported the average latency.

End-to-End Performance Overhead. As HMM is a rela-
tively recent feature and has not yet seen widespread adoption
in production-scale applications, we selected a publicly
available HMM-enabled CUDA application [4], developed
by NVIDIA, for processing the ERAS5 climate dataset [3].
The ERAS processor consists of multiple memory allocation
patterns, including mmap() and malloc() for shared data
allocation. We instrumented mmap call for shared data to
use our custom flag, MAP_HMM, which allows the GPU driver
to keep track of the memory regions of shared data. Since
our customized allocator is built on top of the jemalloc
library, we compared the performance of our SHELL-enabled
application against a version using the jemalloc library.
Table | shows the total elapsed time of process measured by
perf. The SHELL-enabled application shows only a slight
overhead of 0.9% compared to the baseline application. The
memory allocation overhead is measured by the nvidia-smi

TABLE 2: Total number of each type of memory allocation on
shared data region while running the ERAS processor application.

Total Number of

Scheme Invocations (times) Pecentages (%)
mmap 3 02 %
malloc 1,440 99.8 %

TABLE 3: Latency (in micro-seconds) for mmap allocations,
comparing the raw baseline allocator versus SHELL-instrumented.
The last column shows overhead relative to the baseline (%).

Scheme Elapsed Time (us) Relative to Baseline (%)
mmap 5.512 100.0 %
mmap + ioctl 6.106 110.7 %

tool [8], which can show the allocated memory size in a
GPU memory for a given process, and both SHELL-enabled
and baseline application show the same memory allocation
size, which is 5,824 MiB. As pages migrate between the host
and the GPU in 64KB units, there’s no extra fragmentation
in the SHELL-enabled application.

Micro Performance Overhead. We first profiled the pattern
of memory allocation in the ERAS processor application,
and found that all shared data allocations are done using
the mmap() and malloc() functions. Table 2 shows the
total number of each type of memory allocation on the
shared data region while running the ERAS processor
application. The mmap() is used only for a small number of
allocations, while the malloc() is used for the majority of
allocations, consisting of 99.8% of the total allocations to
the shared data region.

As SHELL'’s performance overhead mainly comes from
the (1) custom mmap(), which updates the SHELL table with
ioctl when allocating a shared data region, and (2) the
page fault handler, which checks the access control while
the process is running. Table 3 shows the latency of classical
mmap () and SHELL’s mmap() with ioct1() call. The classial
mmap () 5.512 us, while the SHELL’s mmap() takes 6.104 us,
which shows 10.7% overhead in the SHELL’s mmap() call.
However, this overhead is negligible in the context of the
ERAS processor application, as the mmap() is used only for
a small number of allocations (3 times in total). Table 4
shows the latency of the page fault handler in the GPU
driver, comparing the raw baseline handler versus the access
control enabled SHELL’s page fault handler. The baseline
page fault handler takes 97.02 us, while the SHELL’s page
fault handler takes 108.75 us, which shows 12.1% overhead
in the SHELL’s page fault handler.

7. Discussion

This section discusses several mitigation alternatives and
future research directions.



TABLE 4: Latency (in micro-seconds) for handling page fault in
the GPU driver, comparing the raw baseline handler versus the
access control enabled SHELL’s page fault handler. The last column
shows overhead relative to the baseline (%).

Scheme Elapsed Time (us) Relative to Baseline (%)
baseline 97.02 100.0 %
SHELL 108.75 112.1 %

7.1. Mitigation Alternatives

Unified Virtual Memory (UVM). One straightforward
way to prevent the GHOST-ATTACK is to disable HMM
and instead use Unified Virtual Memory (UVM) [36].
UVM is secure but requires programmers to manually
annotate data shared between the host and GPU (e.g.,
through cudaMallocManaged() API). In contrast, HMM with
our proposed mitigation, SHELL, significantly reduces pro-
grammer burden while still providing security against the
GHOST-ATTACK.

Fork and Sandbox. Another approach is to fork a new pro-
cess and apply least-privilege (e.g., sandboxing) constraints
to the child process executing the untrusted GPU kernel.
While this offers security barriers at some extent, this does
not fundamentally prevent the GHOST-ATTACK. The child
process remains vulnerable to arbitrary host code execution
caused by untrusted GPU kernels. Any channel that allows
untrusted GPU kernels to trigger host execution continues
to pose a security risk, even in a sandboxed environment
as discussed in §3.3. In contrast, SHELL fundamentally pre-
vents GHOST-ATTACK by blocking GPU access to sensitive
host memory regions, thereby frustrating any attempts by
untrusted GPU kernels to trigger host code execution.

Randomize Address Mapping for nvidiactl. A possible
mitigation is to randomize the address mapping for the
nvidiactl device file. This makes it harder for an attacker
to infer the host heap address, complicating attempts to
exploit the mapping of host memory. Nevertheless, this
is not secure in practice. An attacker can still leak host
address information through other channels, such as host
pointers passed as the GPU kernel arguments in the HMM
model. Thus, this approach is not a fundamental solution
to the GHOST-ATTACK. In contrast, SHELL allows the
GPU to access only the data shared between the GPU
and CPU through our mitigation, while preventing access
to host-only data. As a result, SHELL successfully blocks
GHOST-ATTACK from leaking additional host address layout
information, which resides in host-only memory regions
accessible only by the host.

7.2. Future Research Directions

Broaden Secure HMM Support to Other Platforms.
Current GHOST-ATTACK and its mitigation, SHELL, are
focused on NVIDIA’s CUDA platform. However, the design
principles of device drivers to support HMM vary across
hardware and its vendors. For example, the Linux kernel

provides HMM helper functions to support both memory
mirroring and memory migration. NVIDIA GPU driver
adopts a memory migration model, however, in other plat-
forms, memory mirroring, which holds a copy of the host
memory in the GPU memory instead of migrating it, can be
used. Furthermore, the AMD, which is another major GPU
vendor, decided to support HMM in its general-purpose GPU
programming platform, ROCm, since its version 6.5.0, which
is not yet released at the time of this writing. To broaden
the applicability of SHELL, examining the design of HMM
support in other platforms can be a future work.
GPU-to-Host Attack with Shader. The GHOST-ATTACK
in this paper targets the general-purpose GPU programming
model. However, the shader programming model, which is
widely used in graphics applications, can also be a good
vector for GPU-to-Host memory attacks. For example, in
integrated GPU systems, as the GPU shares the same physical
memory with the host, several graphics backends, such
as Vulkan [14] and DirectX [2], provide APIs to declare
shared data that both the host and GPU can access directly.
This shared data region is supported in a more constrained
manner than HMM, but it is worth investigating whether the
GPU-to-Host memory attack can be extended to the shader
programming model.

8. Related work

Prior research on GPU security has predominantly fo-

cused on attacks confined to GPU memory, which has
traditionally been isolated from host memory in discrete
GPU architectures. A broad class of attacks has been
demonstrated, including side-channel leakage, memory cor-
ruption, and privilege escalation within the GPU memory
domain [31, 25, 46, 47, 19, 20, 40, 48, 43, 45, 29]. To
defend against these threats, a number of mitigation strategies
have been proposed to detect or prevent GPU memory
vulnerabilities [24, 44, 21].
GPU Memory Disclosure. Numerous studies have shown
that GPUs are vulnerable to various forms of memory
disclosure through both microarchitectural side channels
and direct memory access vulnerabilities. Naghibijouybari
et al. [31] demonstrated that shared GPU resources can
be exploited to build covert channels between co-resident
GPU kernels, enabling information leakage. Lee et al. [25]
uncovered that GPU memory is not reliably cleared after
deallocation. They showed that by allocating large GPU
buffers, an attacker can retrieve residual graphical data, such
as textures rendered by Chromium, and reconstruct visual
information about previously visited webpages. Zhang et
al. [46] reverse-engineered the TLB behavior of NVIDIA
GPUs to break the isolation guarantees of multi-instance
GPUs (MIG) and infer cross-partition memory access pat-
terns. Zhang et al. [47] introduced a timer-free side-channel
using GPU cache management instructions and leaked the
data without relying on high-precision timers. Karimi et
al. [23] demonstrated that timing side-channels in mobile
GPUs can be exploited to leak sensitive information, such
as AES-128 keys.



GPU Memory Corruption. Several studies have demon-
strated that memory-safety bugs in GPU kernels can be
exploited to corrupt GPU memory, leading to integrity viola-
tions, model degradation, and even control flow hijacking on
the GPU. Di et al. [19] demonstrated that classic memory-
safety bugs in GPU kernels can be exploited to corrupt GPU
memory and compromise the integrity of GPU applications.
Park et al. [40] demonstrated that malicious manipulation of
the GPU memory can degrade deep-learning model outputs to
random guessing, revealing a new threat to ML integrity. Guo
et al. [20] showed the GPU memory corruption attacks on
NVIDIA GPUs, which exploit memory safety bugs in GPU
kernels to corrupt GPU memory. Through extensive reverse-
engineering, they disclosed that the return addresses of GPU
kernels can be overwritten to redirect the execution flow of
the GPU kernel. They further noted that the modern GPU
lacks common security features such as Write XOR Execute
(W”X) and stack canaries. Finally, they demonstrated that
classic exploit techniques in host memory, including buffer
overflow and return-oriented programming (ROP), can be
adapted to hijack the control flow of GPU kernels as well.

Limitations of Previous GPU Attacks. Although these
studies have demonstrated a wide range of side-channels and
memory corruption attacks on GPU memory, they share a
common limitation: none can directly access or corrupt host
memory. In every case, the attacker’s capabilities are confined
to GPU memory, which, under traditional GPU architectures,
is isolated from the host program’s memory. Consequently,
even the most powerful GPU-side exploit cannot read or
overwrite sensitive data stored in the host program’s memory.

In contrast, our work breaks this long-standing limitation
with HMM. We introduce GHOST-ATTACK, a new class of
attacks that exploit memory-safety bugs in HMM-enabled
GPU kernels to directly read from and corrupt the host
program’s memory. These GPU-to-host memory corruption
attacks violate a core security assumption of the CUDA
programming model, namely, that GPU execution cannot
affect host memory integrity. By breaching this boundary,
GHOST-ATTACK enables a new threat model in which
attackers can break host ASLR, exfiltrate sensitive data,
and even hijack the host program’s control flow from within
GPU code.

Mitigations for GPU Memory Safety. To address memory
corruption vulnerabilities in GPU kernels, several compiler-
and runtime-based techniques have been proposed. Henriksen
et al. [21] proposed a compiler-based approach that inserts
bounds checks on array accesses in GPU kernels to mitigate
out-of-bounds memory accesses. Tarek et al. [44] developed
CUCATCH, a dynamic analysis tool designed to detect both
spatial and temporal memory errors in GPU kernels. Their
approach efficiently instruments kernel code to catch a
wide range of memory safety violations, offering developers
practical support for debugging and validation. Lee et al. [24]
proposed a region-based memory safety analysis framework
that performs static pointer analysis at compile time and
inserts runtime bounds checks to prevent spatial memory
violations.

While effective within the GPU memory domain, these
techniques assume strict memory isolation between the GPU
and the CPU. As such, they are not designed to protect
against the broader class of GPU-to-host memory attacks
enabled by HMM. In contrast, our SHELL approach addresses
this emerging threat by enforcing access control across the
unified memory space.

9. Conclusion

In this paper, we expose a critical blind spot in NVIDIA’s
Heterogeneous Memory Management: GPU kernels have
been granted implicit, unlimited access to host memory
under the assumption that they can be fully trusted. We show
that this trust is fundamentally misplaced by demonstrating
existing memory-safety bugs and attacker-supplied GPU
kernels can lead to compromise of host memory, allowing
arbitrary read and write on host memory. To address this, we
introduce SHELL, a lightweight Clang/LLVM-based instru-
mentation and driver-enforced access-control framework that
restricts GPU memory accesses strictly to compiler identified
shared data regions. Our prototype integration with an open-
source NVIDIA GPU driver shows that SHELL completely
blocks GHOST-ATTACK with negligible performance over-
head. As HMM gains traction in modern GPU programming,
SHELL’s compile-time identification of shared data and
runtime enforcement model provide a practical blueprint
for securing future memory management in heterogeneous
computing systems.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.l. Summary

This paper exposes a new attack surface introduced
by Linux Heterogeneous Memory Management (HMM),
where host memory is mapped into the GPU address space
even when not needed for benign computation. The authors
demonstrate GHOST-ATTACK, a GPU-originated exploita-
tion technique that escalates vulnerabilities in CUDA GPU
kernels to hijack host program execution, bypassing ASLR
and compromising applications like PyTorch. The root cause
lies in memory bugs that enable malicious GPU kernels to
access arbitrary host memory. To mitigate this, the paper
proposes SHELL, a compiler-based defense built on LLVM,
which detects shared memory regions and enforces protection
through GPU driver page-fault handling. Evaluation shows
that SHELL effectively defends against GHOST-ATTACK
with low performance overhead.

A.2. Scientific Contributions

« Identifies an impactful vulnerability
o Independent Confirmation of Important Results with
Limited Prior Research

A.3. Reasons for Acceptance

1) The paper presents the first ever attack against the host’s
memory from a GPU kernel, and demonstrates a critical
vulnerability in HMM.

2) Open sourcing this work would significant benefit the
community.

3) Authors provide a practical defense against the newly
discovered attack, using the popular LLVM framework.
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