Systems Programming

Synchronization: Advanced

Byoungyoung Lee
Seoul National University
byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors and James Bornholt's CSE 451 materials.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Note about Examples

m Lecture examples will use semaphores for both counting
and mutual exclusion
® Code is much shorter than using pthread_mutex

Today

m Using semaphores to schedule shared resources
= Readers-writers problem
m Other concurrency issues
" Thread safety
® Races
" Deadlocks

" |nteractions between threads and signal handling

Readers-Writers Problem

Read/ /

Write < @(> ‘ 2ead-only
Access @/ \ ccess

. &

m Problem statement:
" Reader threads only read the object

= Writer threads modify the object (read/write access)
= Writers must have exclusive access to the object

= Unlimited number of readers can access the object

m Occurs frequently in real systems, e.g.,
® Online airline reservation system
= Multithreaded caching Web proxy

Readers/Writers Examples

A

Variants of Readers-Writers

m First readers-writers problem (favors readers)

= No reader should be kept waiting unless a writer has already been
granted permission to use the object.

= A reader that arrives after a waiting writer gets priority over the
writer.

m Second readers-writers problem (favors writers)

" Once a writer is ready to write, it performs its write as soon as
possible

= A reader that arrives after a writer must wait, even if the writer is
also waiting.

m Starvation (where a thread waits indefinitely) is possible
in both cases.

Solution to First Readers-Writers Problem

Readers: Writers:
int readcnt; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {
while (1) {
void reader (void) WAIT (&w) ;
{
while (1) { /* Writing here */
WAIT (&mutex) ;
readcnt++; POST (&w) ;
if (readent == 1) /* First in */ }
WAIT (&w) ; /* Take the }
priority over writer */ rwl.c
POST (&mutex) ;

/* Reading happens here */

WAIT (&mutex) ;

readcnt--;

if (readent == 0) /* Last out */
POST (&w) ;

POST (&mutex) ;

Readers/Writers Examples

(=)
%\ /Q oy
@/ \

o /: .
\ readcnt=0

®
e O

readent = 2 @/ \

®\

Solution to First Readers-Writers Problem

Readers:

Writers:

int readcnt; /*
sem t mutex, w; /*

void reader (void)
{
while (1) {
WAIT (&mutex) ;
readcnt++;
if (readcnt
WAIT (&w) ;
POST (&mutex) ;

Initially 0 */
Both initially 1 */

l) /* First in */

/* Reading happens here */

WAIT (&mutex) ;
readcnt--;
if (readcnt
POST (&w) ;
POST (&mutex) ;

0) /* Last out */

void writer (void)

{
while (1) {
WAIT (&w) ;

/* Writing here */
POST (&w) ;

}
}

rwl.c

Arrivals: R1 R2 W1 R3

Q. what’s the processing order?

Solution to First Readers-Writers Problem

Readers: Writers:

int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {

while (1) {
void reader (void) WAIT (&w) ;

{
while (1) {
WAIT (&mutex) ;
readcnt++; POST (&w) ;
if (readent == 1) /* First in */ }
WAIT (&w) ; }
POST (&mutex) ;

/* Writing here */

rwl.c
R1 %’* Reading happens here */

Arrivals: R1 R2 W1 R3
WAIT (&mutex) ;

readcnt--;

if (readent == 0) /* Last out */ Readcnt ==
POST (&w) ;

W ==
POST (&mutex) ;

10

R2 =

R1

Solution to First Readers-Writers Problem

Readers:

Writers:

int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */

void reader (void)
{
while (1) {

WAIT (&mutex) ;

readcnt++;

f (readcnt

WAIT (&w) ;

POST (&mutex) ;

l) /* First in */

%‘* Reading happens here */

WAIT (&mutex) ;
readcnt--;
if (readcnt
POST (&w) ;
POST (&mutex) ;

0) /* Last out */

void writer (void)
{
while (1) {
WAIT (&w) ;

/* Writing here */

POST (&w) ;
}
}

rwl.c

Arrivals: R1 R2 W1 R3

Readcnt ==
W ==

1

Solution to First Readers-Writers Problem

Readers:

Writers:

int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */

void reader (void)
{
while (1) {
WAIT (&mutex) ;
readcnt++;
if (readcnt == 1) /* First in */
WAIT (&w) ;

POST (&mutex) ;

3* Reading happens here */

WAIT (&mutex) ;

readcnt--;

if (readcnt == 0) /* Last out */
POST (&w) ;

POST (&mutex) ;

void writer (void)

{

}

while (1) {
WAIT (&w) ; e W1

/* Writing here */

POST (&w) ;
}

rwl.c

Arrivals: R1 R2 W1 R3

Readcnt ==
W ==

12

Solution to First Readers-Writers Problem

Readers:

Writers:

int readcnt; /* Initially 0 */
sem t mutex, w; /* Both initially 1 */

void reader (void)
{
while (1) {
WAIT (&mutex) ;
readcnt++;
if (readcnt == 1) /* First in */
WAIT (&w) ;

POST (&mutex) ;

R2 4* Reading happens here */

WAIT (&mutex) ;

readcnt--;

if (readcnt == 0) /* Last out */
POST (&w) ;

POST (&mutex) ;

L +>

void writer (void)

{

}

while (1) {
WAIT (&w) ; e W1

/* Writing here */

POST (&w) ;
}

rwl.c

Arrivals: R1 R2 W1 R3

Readcnt ==
W ==

13

Solution to First Readers-Writers Problem

Readers: Writers:
int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {
while (1) {
void reader (void) WAIT (&w) ; é Wil
{
while (1) { /* Writing here */
WAIT (&mutex) ;
readcnt++; POST (&w) ;
R3 %f (readent == 1) /* First in */ }
WAIT (&w) ; }
POST (&mutex) ;
rwl.c
/* Reading happens here */
R2 9 Arrivals: R1 R2 W1 R3
WAIT (&mutex) ;
readcnt--;
if (readent == 0) /* Last out */ Readcnt ==
POST (&w) ; W ==
POST (&mutex) ;

RL ==>

}

14

Solution to First Readers-Writers Problem

Readers:

Writers:

int readcnt; /*
sem t mutex, w; /*

void reader (void)
{
while (1) {
WAIT (&mutex) ;
readcnt++;
if (readcnt ==
WAIT (&w) ;

POST (&mutex) ;

—

WAIT (&mutex) ;

readcnt--;

if (readcnt ==
POST (&w) ;

R2 #OST (&mutex) ;
}
}

Initially 0 */
Both initially 1 */

l) /* First in */

/* Reading happens here */

0) /* Last out */

void writer (void)

{
while (1) {

WAIT (&w) ; e W1

/* Writing here */

POST (&w) ;

}
}

Arrivals: R1 R2 W1 R3

Readcnt ==
W ==

rwl.c

15

R

Solution to First Readers-Writers Problem

Jd OST (&mutex) ;

Readers: Writers:
int readent; /* Initially 0 */ void writer (void)
sem t mutex, w; /* Both initially 1 */ {
while (1) {
void reader (void) WAIT (&w) ; e Wil
{
while (1) { /* Writing here */
WAIT (&mutex) ;
readcnt++; POST (&w) ;
if (readent == 1) /* First in */ }
WAIT (&w) ; }
POST (&mutex) ;

rwl.c
/* Reading happens here */

Arrivals: R1 R2 W1 R3

WAIT (&mutex) ;

readcnt--;

if (readent == 0) /* Last out */ Readcnt ==
POST (&w) ; W ==

16

Today

m Using semaphores to schedule shared resources

m Readers-writers problem

m Other concurrency issues
" Races
" Deadlocks
" Thread safety
" |nteractions between threads and signal handling

One Worry: Races

m A race occurs when correctness depends on the orders of thread
execution

/* a threaded program with a race */
int main(int argc, char** argv) ({
pthread t tid[N];
int i;
for (i = 0; i < N; i++)
pthread create(&tid[i], NULL, thread, &i);
for (i = 0; 1 < N; i++)
pthread join(tid[i], NULL);
return O;

}

/* thread routine */

void *thread(void *vargp) ({
int myid = *((int *)vargp)
printf ("Hello from thread %d\n", myid);
return NULL;

} race.c

Race example: CVE-2019-2025

Thread 1 [binder transaction()]

Thread 2 [binder_thread write()]

t->buffer=binder_alloc_new_buf();

[if(t->buffer->allow_user_free == 1) — (1) b
L t->buffer->allow_user_free =0 -- (2))
4 : D
binder_free_buf(proc, t->buffer) — (3)
copy_from_user(t->buffer->data,
user, size) -- (4)
. J

19

Race Elimination

m Don’t share state

= E.g., use malloc to generate separate copy of argument for each
thread

m Use synchronization primitives to control access to shared
state

® Each shared variable may use individual mutex/semaphore.

20

Race Detection

m Razzer [IEEE S&P 19]

(https://lifeasageek.github.io/papers/jeong-razzer.pdf)

I int fd = open(”/dev/ptmx”); I

N

Pre-race
User ioctl(fd, TCFLSH); I write(fd, “......”);
User thread B
User thread A ioctl(fd, TCXONC); | ,_—
close(fd);
L Post-race)
s N
Kernel [Exec ("437: if (n_hdlc->tbuf) { (
Flow 432: push_back(free_list,
n_hdlc->tbuf); :

€&):+20: 0 hdicstbuf= NULL :
441:) 217: if (tbuf)
3 218: push_back(free_list
tbuf);
\. J U

Kernel thread B

266: if (n_hdlc->flag & TCXONC)
267: while (list_empty(free_list)) {
268: buf = pop_front(free_list);
269: kfree(buf);

270: }

Post-race (harmful) behavior

Guest
user

[% ioctl(fd, TCFLSH)]] [%[write(fd, “..") |

IR

User thread A User thread B
OExecute OSmgIe OExecute
Breakpoint||@ Fmov 0x20(%rdi), %r8)S:EED (2] movq $0, 0x20(%rbx)
Guest test %r8, %r8) callg Oxffff......cbfO
Kernel - ! ‘
OContinue @Continue
Kernel thread A Kernel thread B
. J
Hypervisor| | rdi: ffff8801e704c000 {—————>| rox: ffffss01e70ac000

vCPUO

® Check race

vCPU1

21

https://lifeasageek.github.io/papers/jeong-razzer.pdf

Race Exploitation

m ExpRace [USENIX Security 21, BlackHat USA 20]
= https://lifeasageek.github.io/papers/yoochan-exprace.pdf

[— Control dependency - - - Data dependency)
Core 0 (Cp) Core 1 (C1) Core 2 (C))
User thr for Task,: User thr for Tasky: User thr for Taskint :
Syscall() Syscally() Syscallint()
Kernel thr for Task,: Kernel thr for Task,,: Kernel thr for Taskint :
O =B an) B
T (M1) Interert L lgl+=— Send interrupt to C;
T v handlfr E Ty
L - @Wn2)--__ T.
0 () -~ ._‘@ R(Mz) 77‘3
. J

https://lifeasageek.github.io/papers/yoochan-exprace.pdf

Today

m Using semaphores to schedule shared resources

® Producer-consumer problem

m Other concurrency issues
" Races
= Deadlocks
" Thread safety
" |nteractions between threads and signal handling

23

A Worry: Deadlock

m Def: A process is deadlocked iff it is waiting for a condition
that will never be true.

m Typical Scenario
" Processes 1 and 2 need two resources (A and B) to proceed
" Process 1 acquires A, waits for B
® Process 2 acquires B, waits for A
= Both will wait forever!

24

A Worry: Deadlock

m Def: A process is deadlocked iff it is waiting for a condition that
will never be true.

m More fully (and beyond the scope of this course), a deadlock
has four requirements
" Mutual exclusion
= Only one process can use the resource at a time
" Hold and wait

= A process holds at least one resource, and further requests for
another resource held by another process (i.e., wait)

® Circular waiting
= No pre-emption
= A resource is voluntarily released by the process holding the resource

25

Deadlocking With Semaphores

int main(int argc, char** argv)
{
pthread t tid[2];
sem init(&mutex[0], O, 1); /* mutex[0] =1 */
sem init(&mutex[1], O, 1); /* mutex[l] =1 */
pthread create(&tid[0], NULL, count, (void*) O0);
pthread create(&tid[1], NULL, count, (void*) 1);
pthread join(tid[0], NULL);
pthread join(tid[1], NULL);
printf ("cnt=%d\n", cnt);
return O;
}
void *count (void *vargp)
{ Tid[O0]
int i; .
int id = (int) vargp; wa}t(so);
for (i = 0; i < NITERS; i++) { wait(s,);
wait (&mutex[id]); wait(&mutex[1l-id]) ; By
cnt++; post(s,) ;
post(s,) ;

post (&mutex[id]); post(&mutex[1l-id]) ;

}
return NULL;

Tid[1]

wait(s;)
wait (sg) ;
cnt++;

post(s;) ;
post (sy) ;

26

Deadlock Visualized in Progress Graph

Thread 1 Locking introduces the
potential for deadlock:
waiting for a condition that
will never be true

post(s,) Deadlock
; ; state
Forbidden region Any trajectory that enters
for s, the deadlock region will
post(s,)
= eventually reach the
deadlock state, waiting for
wait(s,) either S, or S, to become
i ® nonzero

Forbidden region
. Deadlock . .
walt(sl)_ . fors, Unfortunate fact: deadlock is

often non-deterministic (race)

| I I I Thread 0
wait(s,) wait(s,) post(s,) post(s,)
SO=51=1

27

AVOid i ng Dead |0Ck Acquire shared resources in same order

int main(int argc, char** argv)

{
pthread t tid[2];
Sem init (&mutex[0], O, 1); /* mutex[0] =
Sem init (&mutex[1], O, 1); /* mutex[1l] =

Pthread join(tid[0], NULL);
Pthread join(tid[1l], NULL);
printf ("cnt=%d\n", cnt);
return O;

}

Pthread create(&tid[0], NULL, count, (wvoid*) 0);
Pthread create(&tid[1], NULL, count, (wvoid*) 1);

1 */
1 */

void *count (void *vargp)
{
int i;
int id = (int) vargp;
for (1 = 0; i < NITERS; i++) {
wait (&mutex[0]); wait (&mutex[1l]) ;
cnt++;
post(&mutex[id]), post(&mutex[1l-id]) ;
}
return NULL;

Tid[O0]:

wait (sg) ;
wait(s;)
cnt++;

post (sy) ;
post(s,) ;

Tid[1]:

wait(s;)
wait(sy) ;
cnt++;

post(s,) ;
post(sy) ;

28

Avoided Deadlock in Progress Graph

Thread 1

post(sJ

Forbidden region

fors,

post(s,)|
wait(sl_)
Forbidden region
fors
wait(s,) !
| I I I
wait(s,) wait(s;) post(s,) post(s,)

SO=S].=1

Thread 0

No way for trajectory to get
stuck

Processes acquire locks in
same order

Order in which locks released
immaterial

29

Today

m Using semaphores to schedule shared resources

m Readers-writers problem

m Other concurrency issues
" Races
= Deadlocks
"= Thread safety
" |nteractions between threads and signal handling

30

Crucial concept: Thread Safety

m Functions called from a thread must be thread-safe

m Def: A function is thread-safe iff it will always produce
correct results when called repeatedly from multiple
concurrent threads.

m Classes of thread-unsafe functions:
= Class 1: Functions that do not protect shared variables
= Class 2: Functions that keep state across multiple invocations
= (Class 3: Functions that call thread-unsafe functions

31

Thread-Unsafe Functions (Class 1)

m Failing to protect shared variables

" Fix: Use wait and post semaphore operations (or mutex)
= Example: goodcnt.c

= |ssue: Synchronization operations will slow down code

32

Thread-Unsafe Functions (Class 2)

m Relying on persistent state across multiple function invocations
= Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void)
{

next = next*1103515245 + 12345;

return (unsigned int) (next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed)

{

next = seed;

}

Thread-Safe Random Number Generator

m Fix: Pass state as part of argument
= and, thereby, eliminate static state

/* rand r - return pseudo-random integer on 0..32767 */

int rand r(int *nextp)

{
*nextp = (*nextp) * 1103515245 + 12345;
return (unsigned int) (*nextp/65536) % 32768;

m Consequence: programmer using rand r must maintain seed

Thread-Safe Random Number Generator

 glibc implementation

long int
__random (void)

{

int32_t retval;
void

d igned int
__libc_lock lock (lock); —srandom (unsigned int x)

{
__libc_lock_lock (lock);

(void) _ srandom_r (x, &unsafe_state);
__libc_lock_unlock (lock);

(void) __random_r (&unsafe_state, &retval);

__libc_lock _unlock (lock);

return retval;

https://github.com/lattera/glibc/blob/master/stdlib/random.c

35

Thread-Unsafe Functions (Class 3)

m Calling thread-unsafe functions

= Calling one thread-unsafe function makes the entire function that calls it
thread-unsafe

= Fix: Modify the function so that it only calls thread-safe functions ©

36

Reentrant Functions

m Def: A function is reentrant iff it accesses no shared

variables when called by multiple threads.
" |Important subset of thread-safe functions

= Require no synchronization operations

= Example: rand_r

All functions

Thread-safe functions

Thread-unsafe functions

37

Thread-Safe Library Functions

m All functions in the Standard C Library (at the back of your

K&R text) are thread-safe

= Examples:malloc, free, printf, scanf

m Most Unix system calls are thread-safe, with a few

exceptions

" “man page” provides the information

Thread safety MT-Unsafe rac

ime
Thread safety MT-Safe locale

Thread safety | MT-Unsafe race:tmbuf
race:asctime env locale

ctime_r(), gm- Thread safety MT-Safe env 1
time_r(), lo-

caltime_r(),

mktime()

ctime()

ocale
gmtime(), lo- Thread safety | MT-Unsafe race:tmbuf env locale
caltime()

Thread safety | MT-Unsafe race:strtok
strtok_r() | Thread safety | MT-Safe

38

Today

m Using semaphores to schedule shared resources
m Readers-writers problem
m Other concurrency issues

® Races
= Deadlocks

" |nteractions between threads and signal handling

39

Signal Handling Review

Receive
| signal
curr

» Signal
! handler

m Action
= Signal can occur at any point in program execution
= Unless signal is blocked
= Signal handler runs within same thread

= Must run to completion and then return to regular program execution

40

Threads / Signals Interactions

fprintf.lock() l Receive

| signal » Signal

! handler

-
~—-a
-
~—~a
~—a
-
-
-

m Many library functions use “locks” for thread safety
= Because they have hidden shared state
= malloc
= Free lists
= fprintf, printf, puts

= So that outputs from multiple threads don’t interleave

m Q. What would happen if the signal handler call these library functions?

Bad Thread / Signal Interactions

fprintf.lock() Receive
leurr signal

» Handler
+ fprintf.lock()

-
-
-
-
~—~a
~—a
-
-
-

m What if:
= Signal received while library function holds lock
= Handler calls same (or related) library function
m Deadlock!
" The signal handler can return only if the lock is acquired
" The lock would be released only if the signal handler returns

42

Threads Summary

m Threads provide another mechanism for writing concurrent
programs
m Threads are growing in popularity
= Somewhat cheaper than processes
= Easy to share data between threads
m However, the ease of sharing has a cost:

= Easy to introduce subtle synchronization errors
= Read carefully with threads!

43

Thread safe Vs. Async signal safe

m Thread safe

= A function X is thread safe if X does not have race conditions when
invoked by multiple threads simultaneously

= e.g., thread-safe ensures the safety when the function X is invoked
twice individually by two different threads

m Async-signal safe generally implies thread safe
" The opposite does not hold

= e.g., Async-signal safe ensures the safety when the function X is
invoked twice recursively by the same thread

m Check more
® https://en.wikipedia.org/wiki/Thread safety

" https://en.wikipedia.org/wiki/Reentrancy (computing)

44

https://en.wikipedia.org/wiki/Thread_safety
https://en.wikipedia.org/wiki/Reentrancy_(computing)

Memory Consistency Models

m Multi-processors reorder memory
operations in unintuitive, scary ways
= Mostly for optimizing performances

m You may observe very strange behaviors
due to the memory reordering ®

Frant End | ey eaer

Instruction

Store Buffer & Forvarding
56 entries)

3 2 g

¥ Data TLE &
Load Buifer 2| L1 Data Cache
(72 entries) | 1 32KiB 8-Way

3 (& ill Buffers (LF8]
0 e

Memory Subsystem

45

Multithreaded Programs

InitiallyA=B=0

Thread 1 Thread 2
A=1 B=1
if (B==0) if (A ==0)
print “Hello”; print “World”;

Q. What can be printed?
= “Hello”?
= “World”?
= “Hello World”?
= “World Hello”?
= Nothing?

46

Multithreaded Programs

InitiallyA=B=0

Thread 1 Thread 2
A=1 B=1
rO=B rl=A
if (rO == 0) if (r1==0)
print “Hello”; print “World”;

Let’s clarify each thread loads using registers, r0 and rl

47

Sequential Consistency

m Two invariants
= All operations executed in some sequential order
= Each thread’s operations happen in program order

m Sequential consistency is the strongest memory model
= |t allows the fewest reorderings/strange behaviors...

48

Sequential Consistency

InitiallyA=B=0

Thread 1 Thread 2
A=1 B=1
rO=B rl=A
if (rO == 0) if (rl==0)
print “Hello”; print “World”;

Following the sequential consistency:
m “Hello”
m “World”

49

Memory Consistency Models

A memory consistency model defines the permitted reorderings of memory
operations during execution

It is a contract between hardware and software: the hardware will only mess with
your memory operations in these ways

Thread 1 Thread 2
. . A =1 3B =1
Why sequential consistency? o) print(B) @ print(A)

= Agrees with programmer’s intuition

L1 Cache L1 Cache

Why not sequential consistency? (

= Horribly slow to guarantee in hardware

= Coherence guarantee: all writes to the same location are seen in the same
order by every thread

® You can reorder the memory operations, so why not?

L3 Cache]

50

Memory Consistency Models

m Total Store Ordering (TSO)
= Sequential consistency + store buffers
= x86 specifies TSO as its memory models
" Going back to the example:

= “Hello World” and “World Hello” are also possible

m Weak Ordering

[' hread hread
= Sequential consistency + store buffers + load buffers T s : T):a?
= Almost everything can be reordered... @ [print(8) @ Print(A)

= ARM specifies this memory models

Corel

5000000
L2 Cache L2 Cache

[L3 Cache J

