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Note about Examples

 Lecture examples will use semaphores for both counting 
and mutual exclusion
▪ Code is much shorter than using pthread_mutex
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Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Thread safety

▪ Races

▪ Deadlocks

▪ Interactions between threads and signal handling
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Readers-Writers Problem

 Problem statement:
▪ Reader threads only read the object

▪ Writer threads modify the object (read/write access)

▪ Writers must have exclusive access to the object

▪ Unlimited number of readers can access the object

 Occurs frequently in real systems, e.g.,
▪ Online airline reservation system

▪ Multithreaded caching Web proxy
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Readers/Writers Examples
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Variants of Readers-Writers

 First readers-writers problem (favors readers)
▪ No reader should be kept waiting unless a writer has already been 

granted permission to use the object. 

▪ A reader that arrives after a waiting writer gets priority over the 
writer. 

 Second readers-writers problem (favors writers)
▪ Once a writer is ready to write, it performs its write as soon as 

possible 

▪ A reader that arrives after a writer must wait, even if the writer is 
also waiting. 

 Starvation (where a thread waits indefinitely) is possible 
in both cases. 
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Solution to First Readers-Writers Problem

int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);       /* Take the         

priority over writer */

POST(&mutex);          

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void) 

{

while (1) {

WAIT(&w);

/* Writing here */ 

POST(&w);

}

}

Readers: Writers:

rw1.c
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Readers/Writers Examples
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Solution to First Readers-Writers Problem

int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);          

POST(&mutex);          

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void) 

{

while (1) {

WAIT(&w);

/* Writing here */ 

POST(&w);

}

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

Q. what’s the processing order?
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int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);          

POST(&mutex);          

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void) 

{

while (1) {

WAIT(&w);

/* Writing here */ 

POST(&w);

}

}

Solution to First Readers-Writers Problem
Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1 

Readcnt == 1
W == 0



Carnegie Mellon

11

Solution to First Readers-Writers Problem
Readers:
int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);          

POST(&mutex);          

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void) 

{

while (1) {

WAIT(&w);

/* Writing here */ 

POST(&w);

}

}

Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1 

Readcnt == 2
W == 0

R2 
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Solution to First Readers-Writers Problem
Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);          

POST(&mutex);          

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void) 

{

while (1) {

WAIT(&w);

/* Writing here */ 

POST(&w);

}

}

R1 

Readcnt == 2
W == 0

R2 

W1 
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Solution to First Readers-Writers Problem

int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);          

POST(&mutex);          

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void) 

{

while (1) {

WAIT(&w);

/* Writing here */ 

POST(&w);

}

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

R1 

Readcnt == 1
W == 0

R2 

W1 
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int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);          

POST(&mutex);          

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void) 

{

while (1) {

WAIT(&w);

/* Writing here */ 

POST(&w);

}

}

Solution to First Readers-Writers Problem
Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

R1 

Readcnt == 2
W == 0

R2 

W1 

R3 
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Solution to First Readers-Writers Problem
Readers: Writers:
int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);          

POST(&mutex);          

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void) 

{

while (1) {

WAIT(&w);

/* Writing here */ 

POST(&w);

}

}

rw1.c

Arrivals: R1 R2 W1 R3

Readcnt == 1
W == 0

R2 

W1 

R3 
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Solution to First Readers-Writers Problem
Readers:
int readcnt;    /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void) 

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);          

POST(&mutex);          

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void) 

{

while (1) {

WAIT(&w);

/* Writing here */ 

POST(&w);

}

}

Writers:

rw1.c

Arrivals: R1 R2 W1 R3

Readcnt == 0
W == 1

W1 

R3 
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Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling
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One Worry: Races

 A race occurs when correctness depends on the orders of thread 
execution

/* a threaded program with a race */

int main(int argc, char** argv) {

pthread_t tid[N];

int i;

for (i = 0; i < N; i++)

pthread_create(&tid[i], NULL, thread, &i);

for (i = 0; i < N; i++)

pthread_join(tid[i], NULL);

return 0;

}

/* thread routine */

void *thread(void *vargp) {

int myid = *((int *)vargp);

printf("Hello from thread %d\n", myid);

return NULL;

} race.c
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Race example: CVE-2019-2025

Thread 1 [binder_transaction()] Thread 2 [binder_thread_write()]

binder_free_buf(proc, t->buffer) – (3)

t->buffer=binder_alloc_new_buf();

t->buffer->allow_user_free = 0 -- (2)

copy_from_user(t->buffer->data, 

user, size) -- (4)

if(t->buffer->allow_user_free == 1) – (1)
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Race Elimination
 Don’t share state

▪ E.g., use malloc to generate separate copy of argument for each 
thread

 Use synchronization primitives to control access to shared 
state
▪ Each shared variable may use individual mutex/semaphore.



Carnegie Mellon

21

Race Detection

 Razzer [IEEE S&P 19]
▪ (https://lifeasageek.github.io/papers/jeong-razzer.pdf)

https://lifeasageek.github.io/papers/jeong-razzer.pdf
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Race Exploitation

 ExpRace [USENIX Security 21, BlackHat USA 20]
▪ https://lifeasageek.github.io/papers/yoochan-exprace.pdf

https://lifeasageek.github.io/papers/yoochan-exprace.pdf
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Today

 Using semaphores to schedule shared resources
▪ Producer-consumer problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling
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A Worry: Deadlock

 Def: A process is deadlocked iff it is waiting for a condition 
that will never be true. 

 Typical Scenario
▪ Processes 1 and 2 need two resources (A and B) to proceed

▪ Process 1 acquires A, waits for B

▪ Process 2 acquires B, waits for A

▪ Both will wait forever!
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A Worry: Deadlock

 Def: A process is deadlocked iff it is waiting for a condition that 
will never be true. 

 More fully (and beyond the scope of this course), a deadlock 
has four requirements
▪ Mutual exclusion

▪ Only one process can use the resource at a time

▪ Hold and wait

▪ A process holds at least one resource, and further requests for 
another resource held by another process (i.e., wait)

▪ Circular waiting

▪ No pre-emption

▪ A resource is voluntarily released by the process holding the resource
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Deadlocking With Semaphores
int main(int argc, char** argv) 

{

pthread_t tid[2];

sem_init(&mutex[0], 0, 1);  /* mutex[0] = 1 */

sem_init(&mutex[1], 0, 1);  /* mutex[1] = 1 */

pthread_create(&tid[0], NULL, count, (void*) 0);

pthread_create(&tid[1], NULL, count, (void*) 1);

pthread_join(tid[0], NULL);

pthread_join(tid[1], NULL);

printf("cnt=%d\n", cnt);

return 0;

}

void *count(void *vargp) 

{

int i;

int id = (int) vargp;

for (i = 0; i < NITERS; i++) {

wait(&mutex[id]); wait(&mutex[1-id]);

cnt++;

post(&mutex[id]); post(&mutex[1-id]);

}

return NULL;

}

wait(s0);

wait(s1);

cnt++;

post(s0);

post(s1);

wait(s1);

wait(s0);

cnt++;

post(s1);

post(s0);

Tid[0] Tid[1]
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Deadlock Visualized in Progress Graph

Locking introduces  the
potential for deadlock: 
waiting for a condition that 
will never be true

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for 

either s0 or s1 to become 

nonzero

Unfortunate fact: deadlock is 
often non-deterministic (race)

Thread 0

Thread 1

wait(s0) post(s0)wait(s1) post(s1)

post(s1)

wait(s1)

wait(s0)

post(s0)

Forbidden region
for s0

Forbidden region
for s1

Deadlock
state

Deadlock
region

s0=s1=1
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Avoiding Deadlock
int main(int argc, char** argv) 

{

pthread_t tid[2];

Sem_init(&mutex[0], 0, 1);  /* mutex[0] = 1 */

Sem_init(&mutex[1], 0, 1);  /* mutex[1] = 1 */

Pthread_create(&tid[0], NULL, count, (void*) 0);

Pthread_create(&tid[1], NULL, count, (void*) 1);

Pthread_join(tid[0], NULL);

Pthread_join(tid[1], NULL);

printf("cnt=%d\n", cnt);

return 0;

}

void *count(void *vargp) 

{

int i;

int id = (int) vargp;

for (i = 0; i < NITERS; i++) {

wait(&mutex[0]); wait(&mutex[1]);

cnt++;

post(&mutex[id]); post(&mutex[1-id]);

}

return NULL;

}

Acquire shared resources in same order

Tid[0]: Tid[1]:

wait(s0);

wait(s1);

cnt++;

post(s0);

post(s1);

wait(s1);

wait(s0);

cnt++;

post(s1);

post(s0);
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Avoided Deadlock in Progress Graph

Thread 0

Thread 1

wait(s0) post(s0)wait(s1) post(s1)

post(s1)

wait(s0)

wait(s1)

post(s0) Forbidden region
for s0

Forbidden region
for s1

s0=s1=1

No way for trajectory to get 
stuck

Processes acquire locks in 
same order

Order in which locks released 
immaterial
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Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling
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Crucial concept: Thread Safety

 Functions called from a thread  must be thread-safe

 Def:  A function is thread-safe iff it will always produce 
correct results when called repeatedly from multiple 
concurrent threads. 

 Classes of thread-unsafe functions:
▪ Class 1: Functions that do not protect shared variables

▪ Class 2: Functions that keep state across multiple invocations

▪ Class 3: Functions that call thread-unsafe functions
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Thread-Unsafe Functions (Class 1)

 Failing to protect shared variables
▪ Fix: Use wait and post semaphore operations (or mutex)

▪ Example: goodcnt.c

▪ Issue: Synchronization operations will slow down code
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Thread-Unsafe Functions (Class 2)

 Relying on persistent state across multiple function invocations
▪ Example: Random number generator that relies on static state 

static unsigned int next = 1; 

/* rand: return pseudo-random integer on 0..32767 */ 

int rand(void) 

{ 

next = next*1103515245 + 12345; 

return (unsigned int)(next/65536) % 32768; 

} 

/* srand: set seed for rand() */ 

void srand(unsigned int seed) 

{ 

next = seed; 

} 
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Thread-Safe Random Number Generator

 Fix: Pass state as part of argument
▪ and, thereby, eliminate static state 

 Consequence: programmer using rand_r must maintain seed

/* rand_r - return pseudo-random integer on 0..32767 */ 

int rand_r(int *nextp) 

{ 

*nextp = (*nextp) * 1103515245 + 12345; 

return (unsigned int)(*nextp/65536) % 32768; 

} 
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Thread-Safe Random Number Generator

 glibc implementation

https://github.com/lattera/glibc/blob/master/stdlib/random.c
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Thread-Unsafe Functions (Class 3)

 Calling thread-unsafe functions
▪ Calling one thread-unsafe function makes the entire function that calls it 

thread-unsafe

▪ Fix: Modify the function so that it only calls thread-safe functions ☺
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Reentrant Functions

 Def: A function is reentrant iff it accesses no shared 
variables when called by multiple threads. 
▪ Important subset of thread-safe functions

▪ Require no synchronization operations

▪ Example: rand_r

Reentrant
functions

All functions

Thread-unsafe functions

Thread-safe functions
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Thread-Safe Library Functions

 All functions in the Standard C Library (at the back of your 
K&R text) are thread-safe
▪ Examples: malloc, free, printf, scanf

 Most Unix system calls are thread-safe, with a few 
exceptions
▪ “man page” provides the information
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Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling
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Signal Handling Review

 Action
▪ Signal can occur at any point in program execution

▪ Unless signal is blocked

▪ Signal handler runs within same thread

▪ Must run to completion and then return to regular program execution

Icurr
Inext

Signal 
handler

Receive
signal
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Threads / Signals Interactions

 Many library functions use “locks” for thread safety

▪ Because they have hidden shared state

▪ malloc

▪ Free lists

▪ fprintf, printf, puts

▪ So that outputs from multiple threads don’t interleave

 Q. What would happen if the signal handler call these library functions?

Icurr
Inext

Signal 
handler

Receive
signal

fprintf.lock()

fprintf.unlock()



Carnegie Mellon

42

Bad Thread / Signal Interactions

 What if:

▪ Signal received while library function holds lock

▪ Handler calls same (or related) library function

 Deadlock!

▪ The signal handler can return only if the lock is acquired

▪ The lock would be released only if the signal handler returns

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()

fprintf.lock()
fprintf.unlock()
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Threads Summary

 Threads provide another mechanism for writing concurrent 
programs

 Threads are growing in popularity
▪ Somewhat cheaper than processes

▪ Easy to share data between threads

 However, the ease of sharing has a cost:
▪ Easy to introduce subtle synchronization errors

▪ Read carefully with threads!
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Thread safe Vs. Async signal safe

 Thread safe
▪ A function X is thread safe if X does not have race conditions when 

invoked by multiple threads simultaneously

▪ e.g., thread-safe ensures the safety when the function X is invoked 
twice individually by two different threads

 Async-signal safe generally implies thread safe
▪ The opposite does not hold

▪ e.g., Async-signal safe ensures the safety when the function X is 
invoked twice recursively by the same thread

 Check more
▪ https://en.wikipedia.org/wiki/Thread_safety

▪ https://en.wikipedia.org/wiki/Reentrancy_(computing)

https://en.wikipedia.org/wiki/Thread_safety
https://en.wikipedia.org/wiki/Reentrancy_(computing)


Carnegie Mellon

45

Memory Consistency Models

 Multi-processors reorder memory 
operations in unintuitive, scary ways
▪ Mostly for optimizing performances

 You may observe very strange behaviors 
due to the memory reordering 
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Multithreaded Programs

Initially A = B = 0

Thread 1

A = 1

if (B == 0)

print “Hello”;

Thread 2

B = 1

if (A == 0)

print “World”;

Q. What can be printed?
▪ “Hello”?

▪ “World”?

▪ “Hello World”?

▪ “World Hello”?

▪ Nothing?



Carnegie Mellon

47

Multithreaded Programs

Initially A = B = 0

Thread 1

A = 1

r0 = B

if (r0 == 0)

print “Hello”;

Thread 2

B = 1

r1 = A

if (r1 == 0)

print “World”;

Let’s clarify each thread loads using registers, r0 and r1



Carnegie Mellon

48

Sequential Consistency

 Two invariants
▪ All operations executed in some sequential order

▪ Each thread’s operations happen in program order

 Sequential consistency is the strongest memory model
▪ It allows the fewest reorderings/strange behaviors…
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Sequential Consistency

Initially A = B = 0

Thread 1

A = 1

r0 = B

if (r0 == 0)

print “Hello”;

Thread 2

B = 1

r1 = A

if (r1 == 0)

print “World”;

Following the sequential consistency:

 “Hello”

 “World”
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Memory Consistency Models

 A memory consistency model defines the permitted reorderings of memory 
operations during execution

 It is a contract between hardware and software: the hardware will only mess with 
your memory operations in these ways

 Why sequential consistency?

▪ Agrees with programmer’s intuition

 Why not sequential consistency?

▪ Horribly slow to guarantee in hardware

▪ Coherence guarantee: all writes to the same location are seen in the same 
order by every thread

▪ You can reorder the memory operations, so why not?
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Memory Consistency Models

 Total Store Ordering (TSO)

▪ Sequential consistency + store buffers

▪ x86 specifies TSO as its memory models

▪ Going back to the example:

▪ “Hello World” and “World Hello” are also possible

 Weak Ordering

▪ Sequential consistency + store buffers + load buffers

▪ Almost everything can be reordered…

▪ ARM specifies this memory models


