
Carnegie Mellon

1

Systems Programming

Synchronization: Advanced

Byoungyoung Lee

Seoul National University

byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors and James Bornholt’s CSE 451 materials.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Carnegie Mellon

2

Note about Examples

 Lecture examples will use semaphores for both counting
and mutual exclusion
▪ Code is much shorter than using pthread_mutex

Carnegie Mellon

3

Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Thread safety

▪ Races

▪ Deadlocks

▪ Interactions between threads and signal handling

Carnegie Mellon

4

Readers-Writers Problem

 Problem statement:
▪ Reader threads only read the object

▪ Writer threads modify the object (read/write access)

▪ Writers must have exclusive access to the object

▪ Unlimited number of readers can access the object

 Occurs frequently in real systems, e.g.,
▪ Online airline reservation system

▪ Multithreaded caching Web proxy

W1

W3

W2

R1

R3

R2

Read/
Write
Access

Read-only
Access

Carnegie Mellon

5

Readers/Writers Examples

W1

W3

W2

R1

R3

R2

W1

W3

W2

R1

R3

R2

Carnegie Mellon

6

Variants of Readers-Writers

 First readers-writers problem (favors readers)
▪ No reader should be kept waiting unless a writer has already been

granted permission to use the object.

▪ A reader that arrives after a waiting writer gets priority over the
writer.

 Second readers-writers problem (favors writers)
▪ Once a writer is ready to write, it performs its write as soon as

possible

▪ A reader that arrives after a writer must wait, even if the writer is
also waiting.

 Starvation (where a thread waits indefinitely) is possible
in both cases.

Carnegie Mellon

7

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w); /* Take the

priority over writer */

POST(&mutex);

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void)

{

while (1) {

WAIT(&w);

/* Writing here */

POST(&w);

}

}

Readers: Writers:

rw1.c

Carnegie Mellon

8

Readers/Writers Examples

W1

W3

W2

R1

R3

R2

W1

W3

W2

R1

R3

R2

w = 0
readcnt = 0

W1

W3

W2

R1

R3

R2

w = 1
readcnt = 0

w = 0
readcnt = 2

Carnegie Mellon

9

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);

POST(&mutex);

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void)

{

while (1) {

WAIT(&w);

/* Writing here */

POST(&w);

}

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

Q. what’s the processing order?

Carnegie Mellon

10

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);

POST(&mutex);

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void)

{

while (1) {

WAIT(&w);

/* Writing here */

POST(&w);

}

}

Solution to First Readers-Writers Problem
Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1

Readcnt == 1
W == 0

Carnegie Mellon

11

Solution to First Readers-Writers Problem
Readers:
int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);

POST(&mutex);

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void)

{

while (1) {

WAIT(&w);

/* Writing here */

POST(&w);

}

}

Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1

Readcnt == 2
W == 0

R2

Carnegie Mellon

12

Solution to First Readers-Writers Problem
Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);

POST(&mutex);

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void)

{

while (1) {

WAIT(&w);

/* Writing here */

POST(&w);

}

}

R1

Readcnt == 2
W == 0

R2

W1

Carnegie Mellon

13

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);

POST(&mutex);

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void)

{

while (1) {

WAIT(&w);

/* Writing here */

POST(&w);

}

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

R1

Readcnt == 1
W == 0

R2

W1

Carnegie Mellon

14

int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);

POST(&mutex);

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void)

{

while (1) {

WAIT(&w);

/* Writing here */

POST(&w);

}

}

Solution to First Readers-Writers Problem
Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

R1

Readcnt == 2
W == 0

R2

W1

R3

Carnegie Mellon

15

Solution to First Readers-Writers Problem
Readers: Writers:
int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);

POST(&mutex);

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void)

{

while (1) {

WAIT(&w);

/* Writing here */

POST(&w);

}

}

rw1.c

Arrivals: R1 R2 W1 R3

Readcnt == 1
W == 0

R2

W1

R3

Carnegie Mellon

16

Solution to First Readers-Writers Problem
Readers:
int readcnt; /* Initially 0 */

sem_t mutex, w; /* Both initially 1 */

void reader(void)

{

while (1) {

WAIT(&mutex);

readcnt++;

if (readcnt == 1) /* First in */

WAIT(&w);

POST(&mutex);

/* Reading happens here */

WAIT(&mutex);

readcnt--;

if (readcnt == 0) /* Last out */

POST(&w);

POST(&mutex);

}

}

void writer(void)

{

while (1) {

WAIT(&w);

/* Writing here */

POST(&w);

}

}

Writers:

rw1.c

Arrivals: R1 R2 W1 R3

Readcnt == 0
W == 1

W1

R3

Carnegie Mellon

17

Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling

Carnegie Mellon

18

One Worry: Races

 A race occurs when correctness depends on the orders of thread
execution

/* a threaded program with a race */

int main(int argc, char** argv) {

pthread_t tid[N];

int i;

for (i = 0; i < N; i++)

pthread_create(&tid[i], NULL, thread, &i);

for (i = 0; i < N; i++)

pthread_join(tid[i], NULL);

return 0;

}

/* thread routine */

void *thread(void *vargp) {

int myid = *((int *)vargp);

printf("Hello from thread %d\n", myid);

return NULL;

} race.c

Carnegie Mellon

19

Race example: CVE-2019-2025

Thread 1 [binder_transaction()] Thread 2 [binder_thread_write()]

binder_free_buf(proc, t->buffer) – (3)

t->buffer=binder_alloc_new_buf();

t->buffer->allow_user_free = 0 -- (2)

copy_from_user(t->buffer->data,

user, size) -- (4)

if(t->buffer->allow_user_free == 1) – (1)

Carnegie Mellon

20

Race Elimination
 Don’t share state

▪ E.g., use malloc to generate separate copy of argument for each
thread

 Use synchronization primitives to control access to shared
state
▪ Each shared variable may use individual mutex/semaphore.

Carnegie Mellon

21

Race Detection

 Razzer [IEEE S&P 19]
▪ (https://lifeasageek.github.io/papers/jeong-razzer.pdf)

https://lifeasageek.github.io/papers/jeong-razzer.pdf

Carnegie Mellon

22

Race Exploitation

 ExpRace [USENIX Security 21, BlackHat USA 20]
▪ https://lifeasageek.github.io/papers/yoochan-exprace.pdf

https://lifeasageek.github.io/papers/yoochan-exprace.pdf

Carnegie Mellon

23

Today

 Using semaphores to schedule shared resources
▪ Producer-consumer problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling

Carnegie Mellon

24

A Worry: Deadlock

 Def: A process is deadlocked iff it is waiting for a condition
that will never be true.

 Typical Scenario
▪ Processes 1 and 2 need two resources (A and B) to proceed

▪ Process 1 acquires A, waits for B

▪ Process 2 acquires B, waits for A

▪ Both will wait forever!

Carnegie Mellon

25

A Worry: Deadlock

 Def: A process is deadlocked iff it is waiting for a condition that
will never be true.

 More fully (and beyond the scope of this course), a deadlock
has four requirements
▪ Mutual exclusion

▪ Only one process can use the resource at a time

▪ Hold and wait

▪ A process holds at least one resource, and further requests for
another resource held by another process (i.e., wait)

▪ Circular waiting

▪ No pre-emption

▪ A resource is voluntarily released by the process holding the resource

Carnegie Mellon

26

Deadlocking With Semaphores
int main(int argc, char** argv)

{

pthread_t tid[2];

sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */

sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */

pthread_create(&tid[0], NULL, count, (void*) 0);

pthread_create(&tid[1], NULL, count, (void*) 1);

pthread_join(tid[0], NULL);

pthread_join(tid[1], NULL);

printf("cnt=%d\n", cnt);

return 0;

}

void *count(void *vargp)

{

int i;

int id = (int) vargp;

for (i = 0; i < NITERS; i++) {

wait(&mutex[id]); wait(&mutex[1-id]);

cnt++;

post(&mutex[id]); post(&mutex[1-id]);

}

return NULL;

}

wait(s0);

wait(s1);

cnt++;

post(s0);

post(s1);

wait(s1);

wait(s0);

cnt++;

post(s1);

post(s0);

Tid[0] Tid[1]

Carnegie Mellon

27

Deadlock Visualized in Progress Graph

Locking introduces the
potential for deadlock:
waiting for a condition that
will never be true

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for

either s0 or s1 to become

nonzero

Unfortunate fact: deadlock is
often non-deterministic (race)

Thread 0

Thread 1

wait(s0) post(s0)wait(s1) post(s1)

post(s1)

wait(s1)

wait(s0)

post(s0)

Forbidden region
for s0

Forbidden region
for s1

Deadlock
state

Deadlock
region

s0=s1=1

Carnegie Mellon

28

Avoiding Deadlock
int main(int argc, char** argv)

{

pthread_t tid[2];

Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */

Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */

Pthread_create(&tid[0], NULL, count, (void*) 0);

Pthread_create(&tid[1], NULL, count, (void*) 1);

Pthread_join(tid[0], NULL);

Pthread_join(tid[1], NULL);

printf("cnt=%d\n", cnt);

return 0;

}

void *count(void *vargp)

{

int i;

int id = (int) vargp;

for (i = 0; i < NITERS; i++) {

wait(&mutex[0]); wait(&mutex[1]);

cnt++;

post(&mutex[id]); post(&mutex[1-id]);

}

return NULL;

}

Acquire shared resources in same order

Tid[0]: Tid[1]:

wait(s0);

wait(s1);

cnt++;

post(s0);

post(s1);

wait(s1);

wait(s0);

cnt++;

post(s1);

post(s0);

Carnegie Mellon

29

Avoided Deadlock in Progress Graph

Thread 0

Thread 1

wait(s0) post(s0)wait(s1) post(s1)

post(s1)

wait(s0)

wait(s1)

post(s0) Forbidden region
for s0

Forbidden region
for s1

s0=s1=1

No way for trajectory to get
stuck

Processes acquire locks in
same order

Order in which locks released
immaterial

Carnegie Mellon

30

Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling

Carnegie Mellon

31

Crucial concept: Thread Safety

 Functions called from a thread must be thread-safe

 Def: A function is thread-safe iff it will always produce
correct results when called repeatedly from multiple
concurrent threads.

 Classes of thread-unsafe functions:
▪ Class 1: Functions that do not protect shared variables

▪ Class 2: Functions that keep state across multiple invocations

▪ Class 3: Functions that call thread-unsafe functions

Carnegie Mellon

32

Thread-Unsafe Functions (Class 1)

 Failing to protect shared variables
▪ Fix: Use wait and post semaphore operations (or mutex)

▪ Example: goodcnt.c

▪ Issue: Synchronization operations will slow down code

Carnegie Mellon

33

Thread-Unsafe Functions (Class 2)

 Relying on persistent state across multiple function invocations
▪ Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

int rand(void)

{

next = next*1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed)

{

next = seed;

}

Carnegie Mellon

34

Thread-Safe Random Number Generator

 Fix: Pass state as part of argument
▪ and, thereby, eliminate static state

 Consequence: programmer using rand_r must maintain seed

/* rand_r - return pseudo-random integer on 0..32767 */

int rand_r(int *nextp)

{

*nextp = (*nextp) * 1103515245 + 12345;

return (unsigned int)(*nextp/65536) % 32768;

}

Carnegie Mellon

35

Thread-Safe Random Number Generator

 glibc implementation

https://github.com/lattera/glibc/blob/master/stdlib/random.c

Carnegie Mellon

36

Thread-Unsafe Functions (Class 3)

 Calling thread-unsafe functions
▪ Calling one thread-unsafe function makes the entire function that calls it

thread-unsafe

▪ Fix: Modify the function so that it only calls thread-safe functions ☺

Carnegie Mellon

37

Reentrant Functions

 Def: A function is reentrant iff it accesses no shared
variables when called by multiple threads.
▪ Important subset of thread-safe functions

▪ Require no synchronization operations

▪ Example: rand_r

Reentrant
functions

All functions

Thread-unsafe functions

Thread-safe functions

Carnegie Mellon

38

Thread-Safe Library Functions

 All functions in the Standard C Library (at the back of your
K&R text) are thread-safe
▪ Examples: malloc, free, printf, scanf

 Most Unix system calls are thread-safe, with a few
exceptions
▪ “man page” provides the information

Carnegie Mellon

39

Today

 Using semaphores to schedule shared resources
▪ Readers-writers problem

 Other concurrency issues
▪ Races

▪ Deadlocks

▪ Thread safety

▪ Interactions between threads and signal handling

Carnegie Mellon

40

Signal Handling Review

 Action
▪ Signal can occur at any point in program execution

▪ Unless signal is blocked

▪ Signal handler runs within same thread

▪ Must run to completion and then return to regular program execution

Icurr
Inext

Signal
handler

Receive
signal

Carnegie Mellon

41

Threads / Signals Interactions

 Many library functions use “locks” for thread safety

▪ Because they have hidden shared state

▪ malloc

▪ Free lists

▪ fprintf, printf, puts

▪ So that outputs from multiple threads don’t interleave

 Q. What would happen if the signal handler call these library functions?

Icurr
Inext

Signal
handler

Receive
signal

fprintf.lock()

fprintf.unlock()

Carnegie Mellon

42

Bad Thread / Signal Interactions

 What if:

▪ Signal received while library function holds lock

▪ Handler calls same (or related) library function

 Deadlock!

▪ The signal handler can return only if the lock is acquired

▪ The lock would be released only if the signal handler returns

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()

fprintf.lock()
fprintf.unlock()

Carnegie Mellon

43

Threads Summary

 Threads provide another mechanism for writing concurrent
programs

 Threads are growing in popularity
▪ Somewhat cheaper than processes

▪ Easy to share data between threads

 However, the ease of sharing has a cost:
▪ Easy to introduce subtle synchronization errors

▪ Read carefully with threads!

Carnegie Mellon

44

Thread safe Vs. Async signal safe

 Thread safe
▪ A function X is thread safe if X does not have race conditions when

invoked by multiple threads simultaneously

▪ e.g., thread-safe ensures the safety when the function X is invoked
twice individually by two different threads

 Async-signal safe generally implies thread safe
▪ The opposite does not hold

▪ e.g., Async-signal safe ensures the safety when the function X is
invoked twice recursively by the same thread

 Check more
▪ https://en.wikipedia.org/wiki/Thread_safety

▪ https://en.wikipedia.org/wiki/Reentrancy_(computing)

https://en.wikipedia.org/wiki/Thread_safety
https://en.wikipedia.org/wiki/Reentrancy_(computing)

Carnegie Mellon

45

Memory Consistency Models

 Multi-processors reorder memory
operations in unintuitive, scary ways
▪ Mostly for optimizing performances

 You may observe very strange behaviors
due to the memory reordering 

Carnegie Mellon

46

Multithreaded Programs

Initially A = B = 0

Thread 1

A = 1

if (B == 0)

print “Hello”;

Thread 2

B = 1

if (A == 0)

print “World”;

Q. What can be printed?
▪ “Hello”?

▪ “World”?

▪ “Hello World”?

▪ “World Hello”?

▪ Nothing?

Carnegie Mellon

47

Multithreaded Programs

Initially A = B = 0

Thread 1

A = 1

r0 = B

if (r0 == 0)

print “Hello”;

Thread 2

B = 1

r1 = A

if (r1 == 0)

print “World”;

Let’s clarify each thread loads using registers, r0 and r1

Carnegie Mellon

48

Sequential Consistency

 Two invariants
▪ All operations executed in some sequential order

▪ Each thread’s operations happen in program order

 Sequential consistency is the strongest memory model
▪ It allows the fewest reorderings/strange behaviors…

Carnegie Mellon

49

Sequential Consistency

Initially A = B = 0

Thread 1

A = 1

r0 = B

if (r0 == 0)

print “Hello”;

Thread 2

B = 1

r1 = A

if (r1 == 0)

print “World”;

Following the sequential consistency:

 “Hello”

 “World”

Carnegie Mellon

50

Memory Consistency Models

 A memory consistency model defines the permitted reorderings of memory
operations during execution

 It is a contract between hardware and software: the hardware will only mess with
your memory operations in these ways

 Why sequential consistency?

▪ Agrees with programmer’s intuition

 Why not sequential consistency?

▪ Horribly slow to guarantee in hardware

▪ Coherence guarantee: all writes to the same location are seen in the same
order by every thread

▪ You can reorder the memory operations, so why not?

Carnegie Mellon

51

Memory Consistency Models

 Total Store Ordering (TSO)

▪ Sequential consistency + store buffers

▪ x86 specifies TSO as its memory models

▪ Going back to the example:

▪ “Hello World” and “World Hello” are also possible

 Weak Ordering

▪ Sequential consistency + store buffers + load buffers

▪ Almost everything can be reordered…

▪ ARM specifies this memory models

