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Today

 Concurrent Programming is Hard

 Threads
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Concurrent Programming is Hard!

 The human mind tends to be sequential

 The notion of time is often misleading

 Thinking about all possible sequences of events in a 
computer system is at least error prone and often 
impossible

 Often leads to concurrency bugs

▪ Data race, deadlock, livelock, and starvation
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Data Race
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Deadlock
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Starvation

 Yellow must yield to 
green

 Continuous stream 
of green cars

 Overall system 
makes progress, but 
some individuals 
wait indefinitely
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Concurrent Programming is Hard!

 Classical problem classes of concurrent programs:

▪ Races: outcome depends on arbitrary scheduling decisions

▪ Example: who gets the last seat on the airplane?

▪ Deadlock: improper resource allocation prevents forward progress

▪ Example: traffic gridlock

▪ Starvation: external events and/or system scheduling decisions 
can prevent sub-task progress

▪ Example: people always jump in front of you in line

 Many aspects of concurrent programming are beyond the 
scope of our course..

▪ We’ll cover some of these aspects in the next few lectures. 
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Concurrent Programming is Hard!

It may be hard, but …

it is useful and become more and more necessary!
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Today

 Concurrent Programming is Hard

 Threads
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Process is defined by …

 Process = process context + code/data/stack 

+ kernel data structures

Process context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code/Data/Stack

Stack
SP

Shared libraries

Run-time heap

0

Read/write data

Read-only code/dataPC

brk

Kernel data structures:
VM structures
Descriptor table
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A Process With Multiple Threads
 Multiple threads can be associated with a process

▪ Each thread has its own 
▪ logical control flow 
▪ stack (but not protected from other threads)
▪ thread id (TID)

▪ Threads share the same
▪ code, data, and kernel context

Thread 1 context:

Data registers1

Condition codes1

SP1

PC1

stack1

Thread 1

shared libraries

run-time heap

0

read/write data

Code/Data

read-only code/data

Kernel data structures:

VM structures
Descriptor table

Thread 2 context:

Data registers2

Condition codes2

SP2

PC2

stack2

Thread 2
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Logical View of Threads

 Threads associated with process form a pool of peers

▪ Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchy

Threads associated with the process foo

T2
T4

T5 T3

shared code, data
and kernel context
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Concurrent Threads

 Two threads are concurrent if their flows overlap in 
time

 Otherwise, they are sequential

 Examples:

▪ Concurrent: A & B, A&C

▪ Sequential: B & C

Time

Thread A Thread B Thread C
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Concurrent Thread Execution

 Single Core Processor

▪ Simulate parallelism by 
time slicing

 Multi-Core Processor

▪ Can have true 
parallelism

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on two CPU coresRun 3 threads on a single CPU core
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Threads vs. Processes

 How threads and processes are similar

▪ Each has its own logical control flow

▪ Each can run concurrently with others (possibly on different cores)

▪ Each is context switched

 How threads and processes are different

▪ Threads share all code and data (except local stacks)

▪ Processes do not

▪ Threads are somewhat less expensive than processes

▪ Process control (creating and reaping) twice as expensive as thread 
control

▪ Linux numbers:

– ~20K cycles to create and reap a process

– ~10K cycles (or less) to create and reap a thread
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Posix Threads (pthreads) Interface
 pthreads: Standard interface for ~60 functions that 

manipulate threads from C programs
▪ Creating and reaping threads

▪ pthread_create()

▪ pthread_join()

▪ Determining your thread ID

▪ pthread_self()

▪ Terminating threads

▪ pthread_cancel()

▪ pthread_exit()

▪ exit() [terminates all threads] 

▪ return [terminates current thread]

▪ Synchronizing access to shared variables

▪ pthread_mutex_init

▪ pthread_mutex_[un]lock
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void *thread(void *vargp) /* thread routine */

{

printf("Hello, world!\n");

return NULL;                 

} 

The pthreads "hello, world" Program

/*

* hello.c - pthreads "hello, world" program

*/

#include "csapp.h"

void *thread(void *vargp);                    

int main(int argc, char** argv)

{

pthread_t tid;                            

pthread_create(&tid, NULL, thread, NULL); 

pthread_join(tid, NULL);                  

return 0;                                  

}

Thread attributes 
(usually NULL)

Thread arguments
(void *p) 

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c
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Execution of Threaded “hello, world”

Main thread

Peer thread

return NULL;Main thread waits for 
peer  thread to terminate

exit() 

Terminates 
main thread and 
any peer threads

call pthread_create()

call pthread_join()

pthread_join()returns

printf()

Peer thread
terminates

pthread_create()returns


