
Carnegie Mellon

1

Systems Programming

Threads

Byoungyoung Lee

Seoul National University

byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Carnegie Mellon

2

Today

 Concurrent Programming is Hard

 Threads

Carnegie Mellon

3

Concurrent Programming is Hard!

 The human mind tends to be sequential

 The notion of time is often misleading

 Thinking about all possible sequences of events in a
computer system is at least error prone and often
impossible

 Often leads to concurrency bugs

▪ Data race, deadlock, livelock, and starvation

Carnegie Mellon

4

Data Race

Carnegie Mellon

5

Deadlock

Carnegie Mellon

6

Starvation

 Yellow must yield to
green

 Continuous stream
of green cars

 Overall system
makes progress, but
some individuals
wait indefinitely

Carnegie Mellon

7

Concurrent Programming is Hard!

 Classical problem classes of concurrent programs:

▪ Races: outcome depends on arbitrary scheduling decisions

▪ Example: who gets the last seat on the airplane?

▪ Deadlock: improper resource allocation prevents forward progress

▪ Example: traffic gridlock

▪ Starvation: external events and/or system scheduling decisions
can prevent sub-task progress

▪ Example: people always jump in front of you in line

 Many aspects of concurrent programming are beyond the
scope of our course..

▪ We’ll cover some of these aspects in the next few lectures.

Carnegie Mellon

8

Concurrent Programming is Hard!

It may be hard, but …

it is useful and become more and more necessary!

Carnegie Mellon

9

Today

 Concurrent Programming is Hard

 Threads

Carnegie Mellon

10

Process is defined by …

 Process = process context + code/data/stack

+ kernel data structures

Process context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code/Data/Stack

Stack
SP

Shared libraries

Run-time heap

0

Read/write data

Read-only code/dataPC

brk

Kernel data structures:
VM structures
Descriptor table

Carnegie Mellon

11

A Process With Multiple Threads
 Multiple threads can be associated with a process

▪ Each thread has its own
▪ logical control flow
▪ stack (but not protected from other threads)
▪ thread id (TID)

▪ Threads share the same
▪ code, data, and kernel context

Thread 1 context:

Data registers1

Condition codes1

SP1

PC1

stack1

Thread 1

shared libraries

run-time heap

0

read/write data

Code/Data

read-only code/data

Kernel data structures:

VM structures
Descriptor table

Thread 2 context:

Data registers2

Condition codes2

SP2

PC2

stack2

Thread 2

Carnegie Mellon

12

Logical View of Threads

 Threads associated with process form a pool of peers

▪ Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchy

Threads associated with the process foo

T2
T4

T5 T3

shared code, data
and kernel context

Carnegie Mellon

13

Concurrent Threads

 Two threads are concurrent if their flows overlap in
time

 Otherwise, they are sequential

 Examples:

▪ Concurrent: A & B, A&C

▪ Sequential: B & C

Time

Thread A Thread B Thread C

Carnegie Mellon

14

Concurrent Thread Execution

 Single Core Processor

▪ Simulate parallelism by
time slicing

 Multi-Core Processor

▪ Can have true
parallelism

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on two CPU coresRun 3 threads on a single CPU core

Carnegie Mellon

15

Threads vs. Processes

 How threads and processes are similar

▪ Each has its own logical control flow

▪ Each can run concurrently with others (possibly on different cores)

▪ Each is context switched

 How threads and processes are different

▪ Threads share all code and data (except local stacks)

▪ Processes do not

▪ Threads are somewhat less expensive than processes

▪ Process control (creating and reaping) twice as expensive as thread
control

▪ Linux numbers:

– ~20K cycles to create and reap a process

– ~10K cycles (or less) to create and reap a thread

Carnegie Mellon

16

Posix Threads (pthreads) Interface
 pthreads: Standard interface for ~60 functions that

manipulate threads from C programs
▪ Creating and reaping threads

▪ pthread_create()

▪ pthread_join()

▪ Determining your thread ID

▪ pthread_self()

▪ Terminating threads

▪ pthread_cancel()

▪ pthread_exit()

▪ exit() [terminates all threads]

▪ return [terminates current thread]

▪ Synchronizing access to shared variables

▪ pthread_mutex_init

▪ pthread_mutex_[un]lock

Carnegie Mellon

17

void *thread(void *vargp) /* thread routine */

{

printf("Hello, world!\n");

return NULL;

}

The pthreads "hello, world" Program

/*

* hello.c - pthreads "hello, world" program

*/

#include "csapp.h"

void *thread(void *vargp);

int main(int argc, char** argv)

{

pthread_t tid;

pthread_create(&tid, NULL, thread, NULL);

pthread_join(tid, NULL);

return 0;

}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

18

Execution of Threaded “hello, world”

Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

exit()

Terminates
main thread and
any peer threads

call pthread_create()

call pthread_join()

pthread_join()returns

printf()

Peer thread
terminates

pthread_create()returns

