Systems Programming

Signals

Byoungyoung Lee
Seoul National University
byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Review: Exception and Process

m Exception
" Events that require nonstandard control flow
= Generated externally (interrupts) or internally (traps and faults)

m Process
= At any given time, system has multiple active processes
" Only one can execute at a time on any single core
" Each process appears to have
= 1) total control of processor and
= 2) private memory space

Review (cont.)

m Spawning processes
= Call fork

® One call, two returns

m Process completion
" Callexit

® One call, no return

m Reaping and waiting for processes
" Callwait orwaitpid

m Loading and running programs
" Call execve (or variant)

= One call, (normally) no return

execve: Loading and Running Programs

m int execve(char *filename, char *argv[], char *envp[])

m Loads and runs in the current process:
= Executable file filename
= ..with argument list argv
= By convention argv[0]==filename
= ..and environment variable list envp
= “name=value” strings (e.g., USER=blee)
= getenv, putenv, printenv
m Overwrites code, data, and stack
= Retains PID, open files and signal context

m Called once and never returns

= .except if thereis an error

(partial) Taxonomy

Handled by kernel

Exceptions
Handled by user process
Asynchronous Synchronous
Interrupts Traps Faults Aborts

Signals

Today

m Shells
m Signals

Linux Process Hierarchy

.....................
s y
. .
* ‘e
0 .

‘Q
“
.
ans®
T IT LI

0
‘e
",

"""" Daemon ™,
.89 httpd__"_j Login shell Login shell

Child
w w Note: you can view the
hierarchy using the Linux

pstree command

Shell Programs

m Ashellis an application program that runs programs on behalf
of the user

= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
" csh/tcsh BSD Unix C shell
" bash “Bourne-Again” Shell (default Linux shell)

m Simple shell
= Described in the textbook, starting at p. 753
" |mplementation of a very elementary shell
" Purpose
= Understand what happens when you type commands
= Understand use and operation of process control operations

Simple Shell Example

$./shellex
> /bin/ls -1 csapp.c Must give full pathnames for programs
-rw-r--r-- 1 bryant users 23053 Jun 15 2015 csapp.c
> /bin/ps

PID TTY TIME CMD

31542 pts/2 00:00:01 tcsh
32017 pts/2 00:00:00 shellex
32019 pts/2 00:00:00 ps
> /bin/sleep 10 & Run program in background
32031 /bin/sleep 10 &
> /bin/ps

PID TTY TIME CMD
31542 pts/2 00:00:01 tesh
32024 pts/2 00:00:00 emacs
32030 pts/2 00:00:00 shellex
32031 pts/2 00:00:00 sleep Sleep is running
32033 pts/2 00:00:00 ps in background
> quit

Simple Shell Implementation

m Basic loop

® Read line from command line

= Execute the requested operation
= Built-in command (only one implemented is quit)

= Load and execute program from file

int main(int argc, char** argv)

{

char cmdline[MAXLINE]; /* command line */

while (1) {
/* read */
printf ("> ") ;

fgets (cmdline, MAXLINE, stdin);

if (feof(stdin))
exit(0) ;

/* evaluate */
eval (cmdline) ;

shellex.c

Execution is a
sequence of
read/evaluate
steps

10

Simple Shell eval Function

void eval (char *cmdline)

{
char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv);

parseline will
1) parse ‘buf’ into ‘argv’
2) return whether input line ended in ‘&’

shellex.c

1

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv);
if (argv[0] == NULL)
return; /* Ignore empty lines */

lgnore empty lines.

shellex.c

12

Simple Shell eval Function

void eval (char *cmdline)

{
char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv);
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command (argv)) {

If it is a ‘built in” command, then
handle it here in this program.
Otherwise fork/exec the program
specified in argv[0]

shellex.c

Simple Shell eval Function

void eval (char *cmdline)
{
char *argv[MAXARGS];
char buf [MAXLINE];
int bg;
pid t pid;

strcpy (buf, cmdline) ;

/*

Argument list execve() */

Holds modified command line */
Should the job run in bg or fg? */
Process id */

bg = parseline (buf, argv) ;

if (argv[0] == NULL)
return; /* Ignore empty lines */
if ('builtin command (argv)) {
if ((pid = fork()) == 0) { /* Child runs user job */
Create child

shellex.c

14

Simple Shell eval Function

void eval (char *cmdline)

{
char *argv[MAXARGS];
char buf [MAXLINE];
int bg;
pid t pid;

strcpy (buf, cmdline) ;

/*

Argument list execve() */

Holds modified command line */
Should the job run in bg or fg? */
Process id */

bg = parseline (buf, argv) ;

if (argv[0] == NULL)

return; /* Ignore empty lines */

if ('builtin command (argv)) ({
if ((pid = fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[O0]);

exit (0) ;

Startargv[O0].
Remember execve only returns on
error.

shellex.c

15

Simple Shell eval Function

void eval (char *cmdline)

{
char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv);
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command (argv)) ({
if ((pid = fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[O0]);
exit (0) ;

}

/* Parent waits for foreground job to terminate */
if ('bg) {
int status;
if (waitpid(pid, &status, 0) < 0)
unix error ("waitfg: waitpid error");

If running child in foreground,
wait until it is done.

shellex.c

16

Simple Shell eval Function

void eval (char *cmdline)

{

char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv);
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command (argv)) {
if ((pid = fork()) == 0) { /* Child runs user job */

}

return;

if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[O0]);
exit (0) ;

}

/* Parent waits for foreground job to terminate */

if ('bg) {
irflt(vi:?}::;ié(pid, gstatus, 0) < 0) If running child in

;lse unix error ("waitfg: waitpid error"); backgrou.nd, prlnt pld
printf ("$d %s", pid, cmdline); and continue doing

other stuff.

Simple Shell eval Function

void eval (char *cmdline)

{
char *argv[MAXARGS]; /* Argument list execve() */

char buf [MAXLINE]; /* Holds modified command line */
int bg; /* Should the job run in bg or fg? */
pid t pid; /* Process id */

strcpy (buf, cmdline) ;
bg = parseline (buf, argv);
if (argv[0] == NULL)
return; /* Ignore empty lines */

if ('builtin command (argv)) ({
if ((pid = fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[O0]);
exit (0) ;

}

/* Parent waits for foreground job to terminate */
if ('bg) {
int status;

1f (waitpid(pid, é&status, 0) < 0) .
§ :';lvnixiérrg:.;("Waitfglz1 waitpid error") ; OOpS- There IS d
}

else prOblem with

printf ("%d %s", pid, cmdline) ;

} this code.

return;

shellex.c | 18

Problem with Simple Shell Example

m Shell designed to run indefinitely
= Should not accumulate unneeded resources
= Memory
= Child processes
= File descriptors

m In the previous example, shell correctly waits for and reaps
foreground jobs

m But what about background jobs?
= Will become zombies when they terminate
= Will never be reaped because shell (typically) will not terminate
= Will create a memory leak that could run the kernel out of memory

19

Signal comes to the rescue!

m Solution: Exceptional control flow

" The kernel will “signal” a designated process to alert us when a
background process completes

" |n Unix, the alert mechanism is called a signal

20

Today

m Shells
m Signals

21

Signals

m Asignalis a small message that notifies a process that an
event of some type has occurred in the system

= Akin to exceptions and interrupts

= Sent from the kernel (sometimes at the request of another process) to a

process

= Signal type is identified by small integer ID’s (1-30)

" Only information in a signal is its ID and the fact that it arrived

ID Name Default Action
2 SIGINT Terminate
9 SIGKILL Terminate

11 SIGSEGV Terminate

14 SIGALRM Terminate

17 SIGCHLD Ignore

Corresponding Event

User typed ctrl-c

Kill program (cannot override or ignore)
Segmentation violation

Timer signal

Child stopped or terminated

22

Signal Concepts: Sending a Signal

User level
Process B
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
Pending for C Blocked for C

Signal Concepts: Sending a Signal

User level
Process B
Process C

(dp]
(40
=
Q.
w»
.6- kernel
o

Pending for A Blocked for A

X ending for B Blocked for B
Pending for C Blocked for C

Signal Concepts: Sending a Signal

User level
Process A
Process C
kernel
Pending for A Blocked for A
Pending for B Blocked for B
1| Pending for C Blocked for C

Signal Concepts: Sending a Signal

Process B

Process A

nding for C

User level

kernel

Blocked for A

Blocked for B

Blocked for C

Signal Concepts: Sending a Signal

User level
Process B
Process A
Process C

kernel

Pending for A Blocked for A

Pending for B Blocked for B

0| Pending for C Blocked for C

Signal Concepts: Receiving a Signal

m A destination process receives a signal when it is sent by the
kernel

m Some possible ways to react by the destination process:
= Jgnore the signal (do nothing)
= Terminate the process (with optional core dump)
= Catch the signal by executing a user-level function called signal handler

= Akin to a hardware exception handler being called in response to an
asynchronous interrupt:

(1) Signal received (2) Control passes
by process I to signal handler

curr Y. >
lnext (3) Signal
handler runs

(4) Signal handler
returns to
next instruction

28

Signal Concepts: Pending and Blocked Signals

m Asignalis pending if sent but not yet received
" There can be at most one pending signal of any particular type
" |mportant: Signals are not queued

= |If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

m A process can block the receipt of certain signals

= Blocked signals can be delivered, but will not be received until the signal
is unblocked

m A pending signal is received at most once

29

Signal Concepts: Pending/Blocked Bits

m Kernel maintains pending and blocked bit vectors in the
context of each process
= pending: represents the set of pending signals
= Kernel sets bit k in pending when a signal of type k is delivered
= Kernel clears bit k in pending when a signal of type k is received

" blocked: represents the set of blocked signals
= Can be set and cleared by using the sigprocmask syscall
= Also referred to as the signal mask.

30

Sending Signals: Process Groups

m Every process belongs to exactly one process group

p%d=20 pid=40
pPgid=20 pgid=40
Background Background
process group 32 process group 40
pid=21 pid=22 getpgrp ()
pgid=20 pgid=20 Return process group of current process
Foreground setpgid ()

process group 20 Change process group of a process (see

text for details)

3

Sending Signals with /bin/kill Program

m /bin/kill program
sends arbitrary signal to a
process or process group

m Examples

" /bin/kill -9 24818
Send SIGKILL to process 24818

" /bin/kill -9 -24817
Send SIGKILL to every process
in process group 24817

S ./forks 16

Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817
$ pPs

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
$ /bin/kill -9 -24817
$ ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tecsh
24823 pts/2 00:00:00 ps

32

Sending Signals from the Keyboard

m Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT
(SIGTSTP) to every job in the foreground process group
= SIGINT (ctrl-c): default action is to terminate each process
= S|IGTSTP (ctrl-z): default action is to stop (suspend) each process

pid=20

- pid=40
pPgid=20 pgid=40
Background Background
process group 32 process group 40
pid=21 pid=22
pgid=20 pgid=20
Foreground

process group 20

33

Example of ctrl-cand ctrl-z

S ./forks 17

Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>
Suspended

S ps w

PID TTY
27699 pts/8
28107 pts/8
28108 pts/8
28109 pts/8

$ fg
./forks 17
<types ctrl-c>

S ps w

PID TTY
27699 pts/8
28110 pts/8

STAT
Ss

T

T

R+

STAT
Ss
R+

TIME

:01
:01
:00

O O O

TIME
0:00
0:00

COMMAND
—-tcsh
./forks
./forks
PS W

COMMAND
-tcsh
Ps w

17
17

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

34

Sending Signals with kill Function

void forkl2 ()

{
pid t pid[N];
int 1i;
int child status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */

while (1)

}

for (i = 0; i < N; i++) {
printf ("Killing process %d\n", pid[i]);
kill (pid[i], SIGINT);

for (i = 0; i < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminated abnormally\n", wpid);

} forks.c

Receiving Signals

m The signal is delivered when kernel is about to pass control

to process p

Process q Process p

ser code

kernel code
Time user code

kernel code

user code

} context switch

} context switch

36

Receiving Signals

m The signal is delivered when kernel is about to pass
control to process p

m Kernel computes pnb = pending & ~blocked

" The set of pending nonblocked signals for process p

m If (pnb == 0)
= Pass control to next instruction in the logical flow for p
m Else
" Find least nonzero bit k in pnb and force process p to receive
signal k

" The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb

= Pass control to next instruction in logical flow for p
37

Default Actions

m Each signal type has a predefined default action, which is
one of:
® The process terminates
" The process stops until restarted by a SIGCONT signal
" The process ignores the signal

38

Installing Signal Handlers

m The signal function modifies the default action associated with
the receipt of sighal signum:

" handler t *signal (int signum, handler t *handler)

m Possible values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of type signum
= Otherwise, handler is the address of a user-level signal handler
= Called when process receives signal of type signum
= Referred to as “installing” the handler

= Executing handler is called “dispatching”, “catching” or “handling” the
signal

39

Signal Handling Example

void sigint handler (int) /* SIGINT handler */

{

int

printf (

sleep(2) ;

printf (),

fflush (stdout) ;

sleep (1) ; Q. What would happen

PEERNER |)i if you keep typing “ctrl-C”?
exit (0) ;

main (int argc, char** argv)
/* Install the SIGINT handler */
if (signal (SIGINT, sigint handler) == SIG_ERR)

unix error (),

/* Sleep until a signal is delivered. */
pause () ;

return O;

sigint.c

40

Signal Handlers as Concurrent Flows

Process A

“pending bit” for SIGINT is set.

“Pending bit” for SIGINT is cleared,
but “blocking bit” for SIGINT is set.

“blocking bit” for SIGINT is cleared.

Process B

user code (main)

context
kernel code } switch
user code (main)

context
kernel code } switch
user code (handler)

context
kernel code } switch

user code (main)

4

Example: Nested and Same Signals

void check sig_status(void) {
sigset_t sigset;
bool is_pending;
bool is_blocked;

if (sigpending(&sigset) != 0)
perror ("sigpending () error") ;

if (sigismember (&sigset, SIGINT))
is_pending = true;

else
is_pending = false;

if (sigprocmask (SIG_BLOCK, NULL, &sigset) !'= 0)
perror ("sigprocmask () error");

if (sigismember (&sigset, SIGINT))
is_blocked = true;

else
is _blocked = false;

printf ("STATUS: pending [%d] block [%d]\n",
is _pending, is_blocked) ;

void sigint_handler (int sigq)

{

static int count = 0;

printf ("[*] [%d] sigint_handler() START\n",
++count) ;

check sig status();

sleep(3) ;

check sig status();

printf("[*] [%d] sigint_handler() END\n",
count) ;

int main (void)

{

check sig status();
signal (SIGINT, sigint handler);

check sig status();
while (1)

pause() ;
return O;

42

Example: Nested and Same Signals

SIGINT

$./check_sig

STATUS: pending [0] block [0]
STATUS: pending [0] block [0]
"C

Nested SIGINT (two nested SIGINT)

[*] [1] sigint_handler() START
STATUS: pending [0] block [1]
STATUS: pending [0] block [1]
[*] [1] sigint_handler() END

$./check_sig

STATUS: pending [0] block [0]
STATUS: pending [0] block [0]
NG

Nested SIGINT

[*] [1] sigint_handler() START
STATUS: pending [0] block [1]
gle

e

STATUS: pending [1] block [1]
[*] [1] sigint_handler() END

$./check_sig
STATUS: pending [0] block [0]
STATUS: pending [0] block [0]

—p \C

[*] [2] sigint_handler() START
STATUS: pending [0] block [1]
STATUS: pending [0] block [1]
[*] [2] sigint_handler() END

[*] [1] sigint_handler() START
STATUS: pending [0] block [1]

=y "C

STATUS: pending [1] block [1]
[*] [1] sigint_handler() END

[*] [2] sigint_handler() START
STATUS: pending [0] block [1]
STATUS: pending [0] block [1]
[*] [2] sigint_handler() END

43

Nested and Different Signals

m Handlers can be interrupted by other handlers

Main

next

curr@ ®

Handler S Handler T

User-code execution

1 Kernel-code execution

@ While scheduling, kernel
notices “signal S” is pending.

@ Kernel dispatches
“signal S”.

® While scheduling, kernel
notices “signal T” is
pending.

@ Kernel dispatches “Signal T”.

® Handler T returns to the kernel (i.e., sigreturn).
=» Kernel resumes the process execution.

® Handler S returns
to the kernel.

= Kernel resumes the
process execution.

@ The process continues
its execution

44

Blocking and Unblocking Signals

m Implicit blocking mechanism
= Kernel blocks any pending signals of the type currently being handled
= e.g., a SIGINT handler can’t be interrupted by another SIGINT
" Q. Do you see the difference between
= Nested and same signals
= Nested and different signals

m Explicit blocking and unblocking mechanism

" sigprocmask function

45

Safe Signal Handling

m Handlers are tricky because they are concurrent with
main program and share the same global data structures

= Shared data structures can become corrupted.
m We'll explore concurrency issues later

m For now here are some guidelines to help you avoid
trouble.

46

Guidelines for Writing Safe Handlers

GO: Keep your handlers as simple as possible
= e.g., set aglobal flag and return
G1: Call only async-signal-safe functions in your handlers
" printf, sprintf,and malloc are not safe!
G2: Save and restore errno on entry and exit
= So that other nested handlers don’t overwrite your value of errno
G3: Protect accesses to shared data structures by temporarily blocking all
signals
" To prevent possible corruption
G4: Declare global variables as volatile
" To prevent compiler from storing them in a register
G5: Declare global flags as volatile sig atomic t
= flag: variable that is only read or written (e.g. flag = 1, not flag++)
" Flag declared this way does not need to be protected like other globals

Check the textbook for more details!

47

Wrong Example

enum { MAX MSG_SIZE = 24 };
char *err_msg;

void handler(int signum) {
strcpy(err_msg, "SIGINT encountered.");
}

int main(void) {
signal (SIGINT, handler);

err_msg = (char *)malloc(MAX_MSG_SIZE);
if (err_msg == NULL) {
/* Handle error */
}
strcpy(err_msg, "No errors yet.");
/* Main code loop */
return 0;

48

Correct Example

enum { MAX_MSG_SIZE = 24 };
volatile sig atomic t e flag = ©;

void handler(int signum) {
e flag = 1;
}

int main(void) {
char *err_msg = (char *)malloc(MAX MSG_SIZE);
if (err_msg == NULL) {
/* Handle error */

}

signal (SIGINT, handler);
strcpy(err_msg, "No errors yet.");
/* Main code loop */
if (e_flag) {

strcpy(err_msg, "SIGINT received.");
}

return 0;

49

Async-Signal-Safety

m Function is async-signal-safe if either reentrant or non-
interruptible by signals

= Reentrant: All variables stored on stack frame, so it’s not using
global/heap variables to maintain its state. [CS:APP3e 12.7.2]

m Posix guarantees 117 functions to be async-signal-safe
= Source: “man 7 signal-safety”
® Popular async-signal-safe functions:
= exlt, write, walt, wailtpid, sleep, kill
" Popular functions that are not async-signal-safe:
» printf, sprintf, malloc

= Unfortunate fact: write is the only async-signal-safe output function

50

CVE-2024-6387

oligo

0N CVE-2024-6387

New OpenSSH

Vulnerability
Exposes Millions
to Remote Code
Execution

This signal handler (SIGALRM) is designed to close the connection, but it mistakenly calls functions

like syslog(), which are not safe to execute in this asynchronous context. These functions can invoke

other non-async-signal-safe functions like malloc() and free() . leading to inconsistent states and

potential heap corruption. Consequently, an attacker can exploit this vulnerability to execute
arbifrary code on the server, resulfing in remote code execution with root privileges. This type of
vulnerability is critical because it allows unauthenticated remote aftackers to gain full control over

the affected system.

51

O)

ps -ef
| grep 'error’
| awk '{print $3}'

\ | xargs kill -9 J

(2) romyem

Process A Process B

~

_ /
~N

<
Semaphore

Process A acquire

re

rel #0

#1

#2

acquire ‘ #3

:
release Shared

\ Resources

4

!\5) Shared Memory

N)
stack stack
heap heap
data data
shared [N Pl shared

memory - & memory
(mapped) [§ (mapped)
_ ProcessA) . \ Process B

~

Inter-Process Communication (IPC)

blog.bytebytego.com

52

Summary

m Signals provide process-level exception handling
= Can generate from user programs
= Can define effect by declaring signal handler
= Be very careful when writing signal handlers

53

