
Carnegie Mellon

1

Systems Programming

Processes

Byoungyoung Lee

Seoul National University

byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Carnegie Mellon

2

Today

 Processes

 Process Control

Carnegie Mellon

3

Processes

 Process provides two key abstractions:
▪ Logical control flow

▪ Each process seems to have exclusive use of the CPU

▪ Provided by kernel mechanism called context switching

▪ Private address space

▪ Each process seems to have exclusive use of main
memory.

▪ Provided by kernel mechanism called virtual memory

CPU
Registers

Memory

Stack

Heap

Code

Data

 Definition: A process is an instance of a running program.
▪ Not the same as “program” or “processor”

Carnegie Mellon

4

Multiprocessing: The Illusion

 Computer runs many processes simultaneously
▪ Applications for one or more users

▪ Web browsers, email clients, editors, …

▪ Background tasks

▪ Monitoring network & I/O devices

CPU
Registers

Memory

Stack

Heap

Code

Data

CPU
Registers

Memory

Stack

Heap

Code

Data …

CPU
Registers

Memory

Stack

Heap

Code

Data

Carnegie Mellon

5

Multiprocessing Example

 Running program “top” on Linux
▪ System has 262 processes

▪ Identified by Process ID (PID)

Carnegie Mellon

6

Context Switch: CPU/Memory Perspectives

 Single processor executes multiple processes concurrently
▪ Process executions are interleaved (multi-tasking)
▪ Address spaces are managed by virtual memory system
▪ Register values of non-executing processes are saved in memory

CPU
Registers

Memory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Carnegie Mellon

7

Context Switch: CPU/Memory Perspectives

 Context switch

▪ Step #1. Save current registers in memory

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Carnegie Mellon

8

Context Switch: CPU/Memory Perspectives

 Context switch

▪ Step #2. Schedule next process for execution

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

…

Saved

registers

Carnegie Mellon

9

Context Switch: CPU/Memory Perspectives:

 Context switch:

▪ Step #3. Load saved registers and switch address space

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

…

Saved

registers

Carnegie Mellon

10

Context Switch: User/Kernel Perspectives

 Processes are managed by the kernel

 Control flow passes from one process to another via a context switch

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

11

Multiprocessing with Multicore processors

 Multicore processors
▪Multiple CPUs on single chip

▪ Each can execute a separate process

▪ Scheduling of processors onto cores
done by kernel

CPU
Registers

Memory

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Stack

Heap

Code

Data

Saved

registers

…

CPU
Registers

Carnegie Mellon

12

Concurrent Processes

 Each process is a logical control flow.

 Two processes run concurrently if their flows overlap in time

 Otherwise, they are sequential

 Examples (running on single core):
▪ Concurrent: A & B, A & C

▪ Sequential: B & C

Process A Process B Process C

Time

Carnegie Mellon

13

User View of Concurrent Processes

 Control flows for concurrent processes are physically
disjoint in time

 However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time

Carnegie Mellon

14

Today

 Processes

 Process Control

Carnegie Mellon

15

Lifecycle of a process

 Ready
▪ Process is ready to be scheduled by the kernel

 Running
▪ Process is executing

 Waiting
▪ Waiting for I/O or events to be completed

 Terminated
▪ Process is stopped permanently

Carnegie Mellon

16

Obtaining Process IDs

 pid_t getpid(void)

▪ Returns PID of current process

 pid_t getppid(void)

▪ Returns PID of parent process

Carnegie Mellon

17

Terminating Processes

 Process becomes terminated for one of three reasons:
▪ Receiving a signal whose default action is to terminate (next lecture)

▪ Returning from the main routine

▪ Calling the exit function

 void exit(int status)

▪ Terminates with an exit status of status

▪ Convention: normal return status is 0, nonzero on error

 exit is called once but never returns.

Carnegie Mellon

18

Creating Processes

 Parent process creates a new running child process by
calling fork

 int fork(void)

▪ Returns

▪ 0 to the child process

▪ child’s PID to parent process

▪ Child is almost identical to parent:

▪ Childs get an identical copy of the parent’s virtual address space.

▪ Child gets identical copies of the parent’s open file descriptors

▪ Child has a different PID than the parent

 fork is interesting (and often confusing) because
it is called once but returns twice

Carnegie Mellon

19

Conceptual View of fork

 Make complete copy of execution state
▪ Designate one as parent and one as child

▪ Resume execution of either parent or child

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

CPU

Registers
(rax=0)

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Parent
(pid=101)

Child
(pid=102)

➔

Carnegie Mellon

20

Conceptual View of fork

 Make complete copy of execution state
▪ Designate one as parent and one as child

▪ Resume execution of either parent or child

CPU

Registers

Memory

Stack

Heap

Code
Data

Saved
registers

CPU

Registers
(rax=102)

Memory

Stack

Heap

Code
Data

Saved
registers

Stack

Heap

Code
Data

Saved
registers

Parent
(pid=101)

Child
(pid=102)

➔

Carnegie Mellon

21

The fork Function Revisited

 Virtual memory is the key for fork to provide private address
space for each process.

 To create virtual address for new process:
▪ Create exact copies of current page tables.

 On return of fork(), two processes have the same virtual
memory.

 Copy-on-write (COW)
▪ Should the kernel keep individual physical copies of memory of these two

identical processes?

▪ COW: Let’s copy only when required (i.e., written)

▪ To implement COW, flag each page in both processes as read-only

▪ Any write creates new pages using copy-on-write (COW).

Carnegie Mellon

22

fork Example
int main(int argc, char** argv)

{

pid_t pid;

int x = 1;

pid = fork();

if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);

return 0;

} else { /* Parent */

printf("parent: x=%d\n", --x);

return 0;

}

}

 Call once, return twice

 Concurrent execution
▪ Can’t predict execution

order of parent and child

 Duplicate but separate
address space
▪ x has a value of 1 when

fork returns in parent and
child

▪ Subsequent changes to x
are independent

 Shared open files
▪ stdout is the same in

both parent and child$./fork

Q. what would be printed??

Carnegie Mellon

23

Modeling fork with Process Graphs

 A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
▪ Each vertex is the execution of a statement

▪ a -> b means a happens before b

▪ Each graph begins with a vertex with no in-edges

 Any topological sort (ordering) of the graph corresponds to a
feasible total ordering.
▪ Total ordering of vertices where all edges point from left to right

▪ This makes easier to understand

▪ all feasible task ordering

▪ non-feasible task ordering

Carnegie Mellon

24

Process Graph Example

int main(int argc, char** argv)

{

pid_t pid;

int x = 1;

pid = fork();

if (pid == 0) { /* Child */

printf("child : x=%d\n", ++x);

return 0;

}

/* Parent */

printf("parent: x=%d\n", --x);

return 0;

}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

Carnegie Mellon

25

Interpreting Process Graphs

 Original graph:

 Re-labled graph:

child: x=2

main for

k

printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible total ordering:

a b ecf d

Q. Feasible or Infeasible?

Carnegie Mellon

26

fork Example: Two consecutive forks

void fork2()

{

printf("L0\n");

fork();

printf("L1\n");

fork();

printf("Bye\n");

} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0

L1

Bye

Bye

L1

Bye

Bye

Infeasible output:
L0

Bye

L1

Bye

L1

Bye

Bye

forks.c

Carnegie Mellon

27

fork Example: Nested forks in parent

void fork4()

{

printf("L0\n");

if (fork() != 0) {

printf("L1\n");

if (fork() != 0) {

printf("L2\n");

}

}

printf("Bye\n");

}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible or Infeasible?
L0

L1

Bye

Bye

L2

Bye

Feasible or Infeasible?
L0

Bye

L1

Bye

Bye

L2

forks.c

Carnegie Mellon

28

fork Example: Nested forks in children

void fork5()

{

printf("L0\n");

if (fork() == 0) {

printf("L1\n");

if (fork() == 0) {

printf("L2\n");

}

}

printf("Bye\n");

}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf

Bye

Feasible or Infeasible?
L0

Bye

L1

L2

Bye

Bye

Feasible or Infeasible?
L0

Bye

L1

Bye

Bye

L2

forks.c

Carnegie Mellon

29

Reaping Child Processes
 Idea

▪ When process terminates, it still consumes system resources

▪ Examples: Exit status, various OS tables

▪ Called a “zombie”

▪ Living corpse, half alive and half dead

 Reaping
▪ Performed by parent on terminated child (using wait or waitpid)

▪ Parent is given exit status information

▪ Kernel then deletes zombie child process

 What if parent doesn’t reap?
▪ If any parent terminates without reaping a child, then the orphaned

child should be reaped by init process (pid == 1)

▪ So, only need explicit reaping in long-running processes

▪ e.g., shells and servers

Carnegie Mellon

30

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6639 ttyp9 00:00:03 forks

6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps

Zombie
Example

forks.c
linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6639 ttyp9 00:00:03 forks

6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6642 ttyp9 00:00:00 ps

 ps shows child process as
“defunct” (i.e., a zombie)

 Killing parent allows child to
be reaped by init

void fork7() {

if (fork() == 0) {

/* Child */

printf("Terminating Child, PID = %d\n", getpid());

exit(0);

} else {

printf("Running Parent, PID = %d\n", getpid());

while (1)

; /* Infinite loop */

}

}

Carnegie Mellon

31

Non-
terminating
Child Example

 Child process still active even
though parent has terminated

 Must kill child explicitly, or else will
keep running indefinitely

forks.c
linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 forks

6677 ttyp9 00:00:00 ps

linux> kill 6676

linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tcsh

6678 ttyp9 00:00:00 ps

void fork8()

{

if (fork() == 0) {

/* Child */

printf("Running Child, PID = %d\n",

getpid());

while (1)

; /* Infinite loop */

} else {

printf("Terminating Parent, PID = %d\n",

getpid());

exit(0);

}

}

Carnegie Mellon

32

wait: Synchronizing with Children

 Parent reaps a child by calling the wait syscall

 int wait(int *child_status)

▪ Suspends current process until one of its children terminates

▪ Return value is the pid of the child process that terminated

▪ If child_status != NULL, then it will be set to a value indicating
reason the child terminated and the exit status:

Carnegie Mellon

33

wait: Synchronizing with Children

void fork9() {

int child_status;

if (fork() == 0) {

printf("HC: hello from child\n");

exit(0);

} else {

printf("HP: hello from parent\n");

wait(&child_status);

printf("CT: child has terminated\n");

}

printf("Bye\n");

}

printf wait printffork

printf

exit

HP

HC

CT

Bye

forks.c

Feasible output:
HC

HP

CT

Bye

Infeasible output:
HP

CT

Bye

HC

Feasible output(s):
HC HP

HP HC

CT CT

Bye Bye

Carnegie Mellon

34

execve: Loading and Running Programs

 int execve(char *filename, char *argv[], char *envp[])

▪ Load and run the executable in the current process:

▪ Executable file filename

▪ With argument list argv

– By convention argv[0]==filename

▪ Environment variable list envp

– “name=value” strings (e.g., USER=blee)

▪ Overwrite code, data, and stack

▪ Retains PID, open files and signal context

▪ Called once and never returns

▪ …except if there is an error to load/run a program

Carnegie Mellon

35

execve Example

envp[n] = NULL

envp[n-1]

envp[0]

…

"USER=blee"

"PWD=/usr/blee"

environ

if ((pid = fork()) == 0) { /* Child runs program */

if (execve(myargv[0], myargv, environ) < 0) {

printf("%s: Command not found.\n", myargv[0]);

exit(1);

}

}

 Execute "/bin/ls –lt /usr/include" in child process:

myargv[3] = NULL

myargv[2]

myargv[0]
myargv[1]

"/bin/ls"

"-lt"

"/usr/include"

myargv

(argc == 3)

Carnegie Mellon

36

The execve Function Revisited

 To load and run a new
program /bin/ls in the
current process using
execve:

 Setup memory layout

▪ Initialize a page table
according to the program
headers

 Set PC to entry point in
.text

Memory mapped region

for shared libraries

Runtime heap

(via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Private, demand-zero

libc.so

.data

.text
Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

/bin/ls

.data

.text

envp[n] = NULL
envp[n-1]

envp[0]
…

myargv[3] = NULL
myargv[2]

myargv[0]
myargv[1]

Carnegie Mellon

37

Fork in Real-world

Carnegie Mellon

38

Process in Real-world

https://kubernetes.io/docs/concepts/overview/

 Do you run your process on your machine?
▪ No! We run everything on cloud!

▪ Your process runs within a container!

Carnegie Mellon

39

Summary

 Processes
▪ At any given time, system has multiple active processes

▪ Only one can execute at a time on any single core

▪ Each process appears to have total control of
processor + private memory space

 Spawning processes
▪ Call fork

 Process completion
▪ Call exit

 Reaping and waiting for processes
▪ Call wait

 Loading and running programs
▪ Call execve (or variant)

