Systems Programming

Processes

Byoungyoung Lee

Seoul National University
byoungyoung@snu.ac.kr
https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Today

m Processes
m Process Control

Processes

m Definition: A process is an instance of a running program.

"= Not the same as “program” or “processor”

Memory
Stack
m Process provides two key abstractions: Heap
" logical control flow Data
= Each process seems to have exclusive use of the CPU Code
= Provided by kernel mechanism called context switching CPU
" Private address space Registers
= Each process seems to have exclusive use of main

memory.
= Provided by kernel mechanism called virtual memory

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data oee Data
Code Code Code
CPU CPU CPU

Registers Registers Registers

m Computer runs many processes simultaneously
= Applications for one or more users
= Web browsers, email clients, editors, ...
= Background tasks
= Monitoring network & 1/O devices

Multiprocessing Example

top - ©0:51:39 up 121 days, 9:29, 2 users, load average: 0.06, 0.02, 9.00

1 262 total, 1 running, 171 sleeping, @ stopped, @ zombie

0.0 us, 0.0 sy, 0.0 ni,100.0 id, ©.9 wa, 0.9 hi, 0.0 si, 0.0 st
: 16343056 total, 5315620 free, 1694380 used, 9333056 buff/cache
4194300 total, 4191984 free, 2316 used. 14304932 avail Mem

PID USER

13961
6278
1

yoochan
blee
root
root
root
root
root
root
root

PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

20 @ 1913772 72668 39552 S 1271:49 VBoxHeadless
20 40628 3840 3120 :00.07 top

20 226284 9816 6596 :24.52 systemd

20 (%] %) (%] :01.89 kthreadd

%] :00.00 kworker/0:6H
e 100.00 mm_percpu_wq
20 :01.48 ksoftirqd/®@
20 :14. rcu_sched

20 :00. rcu_bh

rt :00. migration/@

®

R
S
S
I
I
S
I
I
S

P OOCOOOO

P OOCOOOO®O®
POCOCOOOO®

P OO0
P O OO W
P OO O®
P OO0 O®p
P OONOOOOON®

m Running program “top” on Linux

= System has 262 processes
= |dentified by Process ID (PID)

Context Switch: CPU/Memory Perspectives

Memory
Stack Stack Stack
Heap : Heap Heap
Data : Data see Data
Code : Code Code
: Saved Saved
registers reqgisters

CPU

Registers

m Single processor executes multiple processes concurrently
" Process executions are interleaved (multi-tasking)
= Address spaces are managed by virtual memory system
= Register values of non-executing processes are saved in memory

Context Switch: CPU/Memory Perspectives

Memory
Stack Stack
Heap Heap
Data ces Data
Code Code
Saved Saved
registers reqgisters

m Context switch

= Step #1. Save current registers in memory

Context Switch: CPU/Memory Perspectives

Memory
Stack - Stack . Stack
Heap Heap - Heap
Data . Data L ooc Data
Code . Code . Code
Saved Saved - Saved
registers . Lregisters | ° registers
1 CPU |-
«| [Registers

m Context switch

= Step #2. Schedule next process for execution

Context Switch: CPU/Memory Perspectives:

Stack

Heap

Data

Code

Saved
reqisters

Stack

Heap

Data

Code

Saved
reqisters

m Context switch:

= Step #3. Load saved registers and switch address space

Context Switch: User/Kernel Perspectives

m Processes are managed by the kernel
m Control flow passes from one process to another via a context switch

Process A Process B

user code

kernel code } context switch

Time | user code
kernel code } context switch

I

I

| user code
I

I

10

Multiprocessing with Multicore processors

Memory

Stack Stack Stack
Heap Heap : Heap
Data Data T Data
Code Code) Code

: Saved

registers
CPU CPU |: & Multicore processors
Registers Registers = Multiple CPUs on single chip

SRR] = Each can execute a separate process

= Scheduling of processors onto cores
done by kernel

1

Concurrent Processes

m Each process is a logical control flow.
m Two processes run concurrently if their flows overlap in time
m Otherwise, they are sequential

m Examples (running on single core):
" Concurrent: A&B,A&C
= Sequential: B& C

Process A Process B Process C

Time

12

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time T

13

Today

m Processes
m Process Control

14

Lifecycle of a process

m Ready

" Process is ready to be scheduled by the kernel

m Running

® Process is executing

m Waiting

= Waiting for I/O or events to be completed

m Terminated

" Process is stopped permanently

Interrupt

Dispatched
I/O or Event Completio /O or Event Wait

15

Obtaining Process IDs

m pid t getpid(void)

= Returns PID of current process

m pid t getppid(void)

= Returns PID of parent process

systemd——ModemManager—2*[{ModemManager}]
NetworkManager—2*[{NetworkManager}]
—accounts-daemon—2*[{accounts-daemon}]
acpid
at-spi-bus-laun——dbus-daemon
3x[{
at-spi2-regist 2% [{at-spi2-registr}]
atd
avahi-daemon—avahi-daemon
—buflab-reportd.
buflab-requestd
buflab-resultd
buflab.pl
3*[chrome]
colord—2x[{colord}]
containerd—78x*[{containerd}]
6*[containerd-shim——docker Jnit-I:gdb 72x[{gdb}1]
T St
12*[{containerd-shim}1]

4*[containerd shin—[ducker-init—[gdb—Ebumh]
72x[{gdb}1]

12*[{containerd
27+ [containerd-shin——docker-init—sudo—
12*[{containerd-shim}]1]

containerd-shin——docker—init——gdb——bomb
41:72'[{gﬂb}]
gdb—72x[{gdb}]
sudo—sshd
-12*[{containerd-shim}]
2

2#[containerd-shim——docker-init——2*[gdb——bomb]]
-E _[72%[{gdb}]1]1]

sudo—sshd
12*[{containerd-shim}]]

containerd-shin—r—docker-init——bash—gdb—-bonb
72%[{gdb}]
db—72%[{gdb}]
udo—sshd
12%[{containerd-shim}]

u-[rontainprd*sh\n—{:docksrfxnlt‘I:gdhAI:hu$bumb]
72%[{gdb}1]

sudo—sshd]
12*[{containerd-shim}]]
containerd-shin——docker-init——gdb—-bomb
_[72+[{gdb}]
sudo——sshd—sshd—sshd—bash——sh—node——node—11x[{node}]
node—12+[{node}]
node——bash—gdb—72%[{gdb}
A{Ebash
12#[{node}]
10+ [{node}]

16

Terminating Processes

m Process becomes terminated for one of three reasons:

= Receiving a signal whose default action is to terminate (next lecture)
= Returning from the main routine
= (Calling the exit function

m void exit(int status)
" Terminates with an exit status of status

= Convention: normal return status is O, nonzero on error

m exit is called once but never returns.

17

Creating Processes

m Parent process creates a new running child process by
calling fork

m int fork (void)
" Returns
= 0 to the child process
= child’s PID to parent process
= Child is almost identical to parent:
= Childs get an identical copy of the parent’s virtual address space.

= Child gets identical copies of the parent’s open file descriptors
= Child has a different PID than the parent

m fork is interesting (and often confusing) because
it is called once but returns twice

18

Conceptual View of fork

Memory

...... Memory parent =" Child
i (pid=101) - (pid=102)
[stack Stack - [stack
- Heap Heap Heap
: Data Data Data
.| Code Code Code
[saved Saved Saved
.| _registers registers registers
.| CPU | CPU
1| Registers : Registers
. - (rax=0)

m Make complete copy of execution state
= Designate one as parent and one as child
= Resume execution of either parent or child

Conceptual View of fork

Memory
....... Mem =i " Parent "I child
i - (pid=101) (pid=102)
: Stack : StaCk StaCk
. Heap - Heap Heap
, Data - Data Data
: Code - |__Code Code
: Saved - Saved Saved
.| _registers - | registers registers
.| CPU | CPU
1| Registers " Registers
. . (rax=102)

m Make complete copy of execution state
= Designate one as parent and one as child
= Resume execution of either parent or child

The £fork Function Revisited

m Virtual memory is the key for fork to provide private address
space for each process.

m To create virtual address for new process:

= Create exact copies of current page tables.

m On return of fork(), two processes have the same virtual
memory.

m Copy-on-write (COW)
= Should the kernel keep individual physical copies of memory of these two
identical processes?
= COW: Let’s copy only when required (i.e., written)
= Toimplement COW, flag each page in both processes as read-only
= Any write creates new pages using copy-on-write (COW).

21

fork Example

int main(int argc, char** argv)

{
pid t pid;
int x = 1;

pid = fork()

if (pid == 0) { /*
printf ("child
return O;

} else { /*
printf ("parent:
return O;

Child */

: x=%d\n", ++x);

Parent */
x=%d\n", --x);

$./fork

Q. what would be printed??

m Call once, return twice

m Concurrent execution
= Can’t predict execution
order of parent and child
m Duplicate but separate
address space

" x has a value of 1 when

fork returns in parent and
child

= Subsequent changes to x
are independent

m Shared open files

" stdout is the samein
both parent and child

22

Modeling £fork with Process Graphs

m A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
= Each vertex is the execution of a statement
" a->b means a happens before b
= Each graph begins with a vertex with no in-edges

m Any topological sort (ordering) of the graph corresponds to a
feasible total ordering.
= Total ordering of vertices where all edges point from left to right
= This makes easier to understand
= all feasible task ordering
= non-feasible task ordering

23

Process Graph Example

int main(int argc, char** argv)

{

pid t pid;
int x = 1;

pid = fork();

if (pid == 0) { /* Child */
printf("child : x=%d\n", ++x);
return 0O;

}

/* Parent */
printf ("parent: x=%d\n", --x);
return O;

fork.c

child: x=2 .
>® e Child
printf exit

x== parent: x=0
® i >® >® Parent
main fork printf exit

24

Interpreting Process Graphs

m Original graph:

child: x=2
>® >»®
printf exit
x==1 parent: x=0
[>® »®
main for printf exit

k

Feasible total ordering:

m Re-labled graph: m

|

b

ne
A\ 4
ne
n.e

0e
Hhe
Q)

LN]
[3 u,

25

fork Example: Two consecutive forks

void fork2 ()

{
printf ("LO\n") ;
fork () ;
printf ("L1\n") ;
fork () ;
printf ("Bye\n") ;

} forks.c

Bye
°
printf
Ll Bye
>0— > >®
printf fork printf
Bye
]
printf
L0 L1l ‘ Bye
o— >® >0— > >®
printf fork printf fork printf

Feasible output:
LO

Ll

Bye

Bye

Ll

Bye

Bye

Infeasible output:
LO

Bye

Ll

Bye

Ll

Bye

Bye

26

fork Example: Nested forks in parent

void fork4 ()

'=0) {

{
printf ("LO\n") ;
if (fork() '= 0) {
printf ("L1\n") ;
if (fork()
printf ("L2\n") ;
}
}
printf ("Bye\n") ;
}

forks.c

Bye Bye
printf pr?Lntf
LO L1l L2 Bye
o > >0 > >0 >

printf fork p

rintf fork printf printf

Feasible or Infeasible? Feasible or Infeasible?
LO LO

Bye L1

L1l Bye

Bye Bye

Bye L2

L2 Bye

27

fork Example: Nested £orks in children

void fork5 ()

{
printf ("LO\n") ;
if (fork() 0)

{

printf ("L1\n") ;

if (fork()

0) {

printf ("L2\n") ;

}

}
printf ("Bye\n") ;

forks.c

L2 Bye
pig.ntf pr’.ntf
Ll Bye
>0 >@— >
printf fork printf
L0 Bye
- > >0

printf fbrk printf

Feasible or Infeasible?
LO

Bye

L1

Bye

Bye

L2

Feasible or Infeasible?
LO

Bye

L1l

L2

Bye

Bye

28

Reaping Child Processes
m Ildea
= When process terminates, it still consumes system resources
= Examples: Exit status, various OS tables
= Called a “zombie”
= Living corpse, half alive and half dead
m Reaping
= Performed by parent on terminated child (using wait orwaitpid)
= Parent is given exit status information
= Kernel then deletes zombie child process

m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the orphaned
child should be reaped by init process (pid == 1)

= So, only need explicit reaping in long-running processes
= e.g., shells and servers

29

Zombie
Example

linux> ./forks 7 &

[1] 6639
Running Parent, PID = 6639
Terminating Child, PID

linux> ps

PID
6585
6639
6640
6641

TTY

ttyp9
ttyp9
ttyp9
ttyp9

00:
00:
00:
00:

linux> kill 6639
Terminated

[1]

linux> ps

PID
6585
6642

TTY
ttyp9
ttyp9

00:
00:

void fork7() {
if (fork() == 0) {
/* Child */
printf ("Terminating Child, PID = %d\n", getpid()):

exit (0) ;

} else {
printf ("Running Parent, PID = %d\n", getpid())
while (1)

; /* Infinite loop */

TIME
00:00
00:03
00:00
00:00

TIME
00:00
00:00

= 6640

CMD
tcsh
forks

forks.c

m ps shows child process as

forks <defunct> (/ “defunct” (i.e., a zombie)

Ps

CMD

tcsh
pPs

m Killing parent allows child to
be reaped by init

30

Non-
terminating
Child Example

linux> ./forks 8

void fork8 ()
{

if (fork() 0) {
/* Child */
printf ("Running Child, PID = %d\n",
getpid()) ;
while (1)
; /* Infinite loop */
} else {
printf ("Terminating Parent, PI
getpid()) ;
exit (0) ;

= %d\n",

m Child process still active even
though parent has terminated

Must kill child explicitly, or else will

Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps
linux> kill 6676 €
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

keep running indefinitely

31

wait: Synchronizing with Children

m Parent reaps a child by calling the wait syscall

m int wait(int *child status)

Suspends current process until one of its children terminates
Return value is the pid of the child process that terminated

If child status != NULL, then it will be set to a value indicating
reason the child terminated and the exit status:

32

wait: Synchronizing with Children

void fork9 () {
int child status;
HC exit
>»0— >
if (fork() == 0) { printf
printf ("HC: hello from child\n");
exit (0) ;
CT
} else { Bye
printf ("HP: hello from parent\n"); .— gfi e tz
wait (&child status); fork printf wait printf
printf ("CT: child has terminated\n");
}
printf ("Bye\n") ;
} forks.c
Feasible output(s): Infeasible output:
HC HP HP
HP HC CT
CT CT Bye

Bye Bye HC

33

execve: Loading and Running Programs

m int execve(char *filename, char *argv[], char *envp[])
" Load and run the executable in the current process:
= Executable file £filename
= With argument list argv
— By convention argv[0]==filename
= Environment variable list envp
— “name=value” strings (e.g., USER=blee)
= Qverwrite code, data, and stack
= Retains PID, open files and signal context
= Called once and never returns
= ...except if there is an error to load/run a program

34

execve Example

m Execute "/bin/ls -1t /usr/include" in child process:

envp[n] = NULL
envp[n-1] —> "PWD-=/usr/blee"
environ > envp[0] —> "USER=blee
myarqgv[3] = NULL
(argc == 3) myargv[2] ——> "/usr/include"

mYClr'QV[I_] QLU L

myargy —— LMYargvio] > /bin/ls"

if ((pid = fork()) == 0) { /* Child runs program */

if (execve (myargv[0], myargv, environ) < 0) {
printf ("%$s: Command not found.\n", myargv[0]) ;
exit(1l);

35

The execwve Function Revisited

libc.so

envp[n] = NULL
envp[n-1]

envpl0]

myargv[3] = NULL

myargv[2]

myargv[1]

myargv[0]

User stack

'
1

.data

text

/bin/ls

Memory mapped region
for shared libraries

1

Runtime heap
(viamalloc)

Uninitialized data (.bss)

.data

text

Initialized data (.data)

Program text (.text)

Private, demand-zero

} Shared, file-backed

} Private, demand-zero

} Private, demand-zero

} Private, file-backed

To load and run a new
program /bin/ls inthe
current process using
execve:

Setup memory layout

= |nitialize a page table
according to the program
headers

Set PC to entry pointin
.text

36

Fork in Real-world

Android Internals: Zygote

/dev/socket/zygote
(POSIX permission: 0666)

Preloaded Libraries
(including Da vik VM itself)

4

Zygote Daemon

Invocation Request
(UNIX Domain Socket)

| IR N (S —

(Ancestor)

v chromium-browser for plugin mod

¥ chromium-browser --type=plugin

¥'chromium-browser --type=zygote

chromium-browser --type=renderer

'//

* 6% Korea Android Conference 6/29

Network Intertace

Netwark Ineriace

Netwoki /G

Server Proc

Netwokr UQ

37

Process in Real-world

m Do you run your process on your machine?

= No! We run everything on cloud! aaf
= Your process runs within a container! ddOCker

kubernetes

App App App App
| Bin/lbray Bin/Library App App App
Virtual Machine Virtual Machine Container Container Container

App App App

Traditional Deployment Virtualized Deployment Container Deployment

https://kubernetes.io/docs/concepts/overview/

Summary

m Processes
= At any given time, system has multiple active processes
= Only one can execute at a time on any single core

= Each process appears to have total control of
processor + private memory space

m Spawning processes
= Call fork

m Process completion

= Call exit

m Reaping and waiting for processes

= Call wait

m Loading and running programs

= Call execve (or variant)

39

