
Systems Programming

Exceptions

Byoungyoung Lee

Seoul National University

byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Today

 Exceptional Control Flow CSAPP 8

 Exceptions CSAPP 8.1

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

 CPU/Processors do only one thing:
▪ Each CPU core simply reads and executes a sequence of instructions,

one at a time *

▪ This sequence is the CPU’s control flow

CPU’s control flow

Time

* Externally, from an architectural
viewpoint (internally, the CPU
may use parallel out-of-order
execution)

Altering the Control Flow

 Up to now: two mechanisms for changing control flow:
▪ Jumps and branches

▪ Call and return

 Insufficient for a useful system:
Difficult to react to changes in system state
▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ User hits Ctrl-C at the keyboard

▪ System timer expires

 System needs mechanisms for “exceptional control flow”

Today

 Exceptional Control Flow

 Exceptions

Exceptions

 An exception is a transfer of control to the OS kernel in response to some
event

▪ OS == Kernel == Privileged mode == Ring 0

▪ Application == User == Unprivileged mode == Ring 3

▪ Examples of events: Divide by 0, arithmetic overflow, page fault, I/O request
completes, typing Ctrl-C

User code Kernel code

Exception
Exception processing
by exception handler

• 1) Return to I_current
• 2) Return to I_next
• 3) Abort

Event I_current
I_next

0
1

2

n-1

Exception Tables

 Each type of event has a
unique exception number k

 k = index into exception table
(a.k.a. interrupt vector)

 Handler k is called each time
exception k occurs

 OS implements all code for exception
handlers.

 OS prepares “Exception Table”, and let
CPU know where “Exception Table” is.

 Upon receiving an event, CPU
dispatches the exception to the
corresponding exception handler.

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception numbers

(partial) Taxonomy

Asynchronous Synchronous

Interrupts Traps Faults Aborts

Exceptions

Asynchronous Exceptions (Interrupts)

 Caused by events external to the processor
▪ External devices set the processor’s interrupt pin

▪ Kernel’s handler returns to “next” instruction

 Examples:
▪ Timer interrupt

▪ Every few ms, an external timer chip triggers an interrupt

▪ Used by the kernel to take back control from user programs

– Called “kernel preemption”

▪ I/O interrupt from external device

▪ From keyboard: Hitting Ctrl-C at the keyboard

▪ From NIC: Arrival of a packet from a network

▪ From disk: Arrival of data from a disk

Synchronous Exceptions

 Caused by events that occur as a result of executing an
instruction:
▪ Traps

▪ Intentional to ask for a certain pre-defined service

▪ Examples: system calls, gdb breakpoints

▪ Returns control to “next” instruction

▪ Faults

▪ Unintentional but possibly recoverable

▪ Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

▪ Either re-executes faulting (“current”) instruction or aborts

▪ Aborts

▪ Unintentional and unrecoverable

▪ Examples: illegal instruction, parity error, machine check

▪ Aborts current program

Carnegie Mellon

11

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call in Linux has a unique ID number

 Examples:

System Call Example: Opening File
 User calls: open(filename, options)

 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

...

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2

e5d7e: 0f 05 syscall # Return value in %rax

e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax

...

e5dfa: c3 retq

User code Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative %rax is an error

System Call Example: Opening File
 User calls: open(filename, options)

 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

...

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2

e5d7e: 0f 05 syscall # Return value in %rax

e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax

...

e5dfa: c3 retq

User code Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative %rax is an error

System call is almost like a function call
• Transfer of control
• On return, executes next instruction
• Passes arguments using calling convention
• Result in %rax

One Important exception!
• Executed by Kernel
• Different set of privileges
• “index” of “function” is in %rax

Carnegie Mellon

14

System Call Example: Opening File
fopen(“test.txt”, …)

fopen(…) {

…

open(…)

…

}

syscall_handler(…) {

syscall_table[%eax]()

}

sys_open(..)

// do real work for open()

}

movl $SYS_OPEN, %eax

int 0x80

ret

test.c

fopen.c (libc)

usys.s (libc)

&syscall_

handler

0x80
syscall.c

open.cexception

table

&sys_open

0x2

syscall table

USER

Kernel

Fault Example: Page Fault
 User writes to memory location

 That portion (page) of user’s memory is currently on disk

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code Kernel code

Exception: page fault

Copy page from
disk to memory

Return and
reexecute movl

movl

Fault Example: Invalid Memory Reference

 Kernel sends SIGSEGV signal to user process (will be covered later)

 User process exits with “segmentation fault”

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User code Kernel code

Exception: page fault

Detect invalid address

movl

Signal process

Summary

 Exceptions
▪ Events that require nonstandard control flow

▪ Generated externally (interrupts) or internally (traps and faults)

