
Carnegie Mellon

1

Systems Programming

Virtual Memory: Systems

Byoungyoung Lee

Seoul National University

byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Carnegie Mellon

2

Review: Virtual Memory & Physical Memory

 A page table contains page table entries (PTEs) that map
virtual pages to physical pages.

Read
VA 1

Physical memory

Empty

Data K

Empty
0

1

Virtual memory

Empty

Data B

Data A

Empty

Data K

Data J

Disk

2

3

4

5

6

7

0

1

2

3 Data B

Empty

Empty

0

1

Empty

PA 3

Disk 0

Empty

PA 1

Disk 9

2

3

4

5

6

7

Empty

Empty

Page Table

Read
VA 1

Application’s view
What really happens

(by CPU/MMU)

Data A Data B Data C

Data D Data E Data F

Data G Data H Data I

Data J

0

3

6

9 Empty Empty

Carnegie Mellon

3

Review: Translation Lookaside Buffer (TLB)

MMU
Cache/
Memory

CPU
VA

1

PA

4

Data

5

Typically, a TLB hit eliminates extra memory accesses required
to do a page table lookup.

TLB

2

VPN

PTE

3

 A small cache of page table entries with fast access by MMU

Carnegie Mellon

4

Today

 Case study: Core i7/Linux memory system (CSAPP 9.7)

 Memory mapping

Carnegie Mellon

5

Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

Carnegie Mellon

6

End-to-end Core i7 Address Translation

CPU

VPN VPO

36 12

TLBT TLBI

432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2

99

PTE

CR3

PPN PPO

40 12

Page tables

TLB

miss

TLB

hit

Physical

address

(PA)

Result

32/64

...

CT CO

40 6

CI

6

L2, L3, and

main memory

L1 d-cache

(64 sets, 8 lines/set)

L1

hit

L1

miss

Virtual address (VA)

VPN3 VPN4

99

PTE PTE PTE

Carnegie Mellon

7

Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page location on disk) P=0

526263

Carnegie Mellon

8

Core i7 Page Table Translation

CR3

Physical

address

of page

Physical

address

of L1 PT

9

VPO

9 12 Virtual

address

L4 PT

Page

table

L4 PTE

PPN PPO

40 12 Physical

address

Offset into

physical and

virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT

Page middle

directory

L3 PTE

L2 PT

Page upper

directory

L2 PTE

L1 PT

Page global

directory

L1 PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512 GB
region

per entry

1 GB
region

per entry

2 MB
region

per entry

4 KB
region

per entry

Carnegie Mellon

9

Virtual Address Space of a Linux Process

Kernel code and data

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memory

Process-specific data
structs (ptables,

task and mm structs,
kernel stack)

Kernel
virtual
memory

0x00400000

Carnegie Mellon

10

Today

 Case study: Core i7/Linux memory system (CSAPP 9.7)

 Memory mapping

Carnegie Mellon

11

Memory Mapping

 VM areas are be backed by (i.e., get its initial page from) :
▪ Regular file on disk (e.g., an executable object file)

▪ Initial page bytes come from a section of a file

▪ Anonymous file (e.g., nothing)

▪ First fault will allocate a physical page full of 0's (demand-zero page)

▪ Once the page is written to (dirtied), it is like any other page

 Dirty pages are copied back and forth between memory and a
special swap file.

Carnegie Mellon

12

Review: Memory Management & Protection

 Code and data can be isolated or shared among processes

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

Data A
Code B

...

0

N-1

Data C
Code B

...

Data A

Code B

Data C

...

0

M-1

Address
translation

Carnegie Mellon

13

Sharing Revisited: Shared Objects

 Process 1 maps the
shared object.

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Shared
object

Page Table

for

Process 1

Carnegie Mellon

14

Sharing Revisited: Shared Objects

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Process 2 maps the
same shared object.

 Notice how the
virtual addresses can
be different.

Shared
object

Page Table

for

Process 1
Page Table

for

Process 2

Carnegie Mellon

15

Sharing Revisited:

Private Copy-on-write (COW) Objects

 Two processes
mapping a private
copy-on-write (COW)
object

 Area flagged as
private copy-on-write

 PTEs in private areas
are flagged as read-
only

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Private
copy-on-write
area

Shared
object

Read-only
Read-only

Carnegie Mellon

16

Sharing Revisited:
Private Copy-on-write (COW) Objects

 Instruction writing to
private page triggers
protection fault.

 Handler creates new
R/W page, and copies
the data (copy-on-write)

 Instruction restarts
upon handler return.

 Conclusion: Copying
deferred as long as
possible!

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-
write

Write

Shared
object

RO

RO
RW

RW

Carnegie Mellon

17

Finding Shareable Pages

 Kernel Same-Page Merging (deduplication)
▪ OS scans through all of physical memory, looking for duplicate pages

▪ When found, merge into single copy, marked as copy-on-write

▪ Implemented in Linux kernel in 2009

▪ Especially useful in cloud machines, running many VMs

▪ Many security issues have been found related to deduplication 

Carnegie Mellon

18

User-Level Memory Mapping

void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

 Map len bytes starting at offset offset of the file specified
by file description fd, preferably at address start

▪ start: may be 0 for “pick an address”

▪ prot: PROT_READ, PROT_WRITE, PROT_EXEC, ...

▪ flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

 Return a pointer to start of mapped area (may not be start)

Carnegie Mellon

19

User-Level Memory Mapping
void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

len bytes

start

(or address
chosen by kernel)

Process virtual memoryDisk file specified by
file descriptor fd

len bytes

offset

(bytes)

0 0

Carnegie Mellon

20

Uses of mmap

 Reading big files
▪ Uses paging mechanism to bring files into memory

 Shared data structures
▪ When call with MAP_SHARED flag

▪ Multiple processes have access to same region of memory

▪ Risky!

 File-based data structures
▪ E.g., database

▪ Give prot argument PROT_READ | PROT_WRITE

▪ When unmap region, file will be updated via write-back

▪ Can implement load from file / update / write back to file

Carnegie Mellon

21

Virtual Memory in Real-world

https://raddinox.com/gpu-passthrough-to-windows-11-using-libvirt-qemu

Carnegie Mellon

22

Summary

 VM requires hardware support
▪ Exception handling mechanism

▪ TLB

▪ Various control registers

 VM requires OS support
▪ Managing page tables

▪ Implementing page replacement policies

▪ Managing file system

 VM enables many capabilities
▪ Loading programs from memory

▪ Providing memory protection

