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Review: Virtual Memory & Physical Memory

 A page table contains page table entries (PTEs) that map 
virtual pages to physical pages.
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Review: Translation Lookaside Buffer (TLB)
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Typically, a TLB hit eliminates extra memory accesses required 
to do a page table lookup.
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 A small cache of page table entries with fast access by MMU 
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Today

 Case study: Core i7/Linux memory system (CSAPP 9.7)

 Memory mapping
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Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way 

(shared by all cores)
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64 entries, 4-way
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128 entries, 4-way

L2  unified TLB
512 entries, 4-way
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32 KB, 8-way

MMU 
(addr translation)

Instruction
fetch
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DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package
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End-to-end Core i7 Address Translation
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Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software) 

D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address 
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page location on disk) P=0

526263
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Core i7 Page Table Translation
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Virtual Address Space of a Linux Process

Kernel code and data

Memory mapped region 
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memory

Process-specific data
structs (ptables,

task and mm structs, 
kernel stack)

Kernel
virtual 
memory

0x00400000
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Today

 Case study: Core i7/Linux memory system (CSAPP 9.7)

 Memory mapping
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Memory Mapping

 VM areas are be backed by (i.e., get its initial page from) :
▪ Regular file on disk (e.g., an executable object file)

▪ Initial page bytes come from a section of a file

▪ Anonymous file (e.g., nothing)

▪ First fault will allocate a physical page full of 0's (demand-zero page)

▪ Once the page is written to (dirtied), it is like any other page

 Dirty pages are copied back and forth between memory and a 
special swap file.
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Review: Memory Management & Protection 

 Code and data can be isolated or shared among processes
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Sharing Revisited: Shared Objects

 Process 1 maps the 
shared object.

Physical
memory

Process 1
virtual memory

Process 2
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Page Table 

for 
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Sharing Revisited: Shared Objects

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Process 2 maps the 
same shared object. 

 Notice how the 
virtual addresses can 
be different.
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object
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Process 1
Page Table 
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Sharing Revisited: 

Private Copy-on-write (COW) Objects

 Two processes 
mapping a private 
copy-on-write (COW)  
object

 Area flagged as 
private copy-on-write

 PTEs in private areas 
are flagged as read-
only

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Private
copy-on-write
area

Shared
object

Read-only
Read-only
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Sharing Revisited: 
Private Copy-on-write (COW) Objects

 Instruction writing to 
private page triggers 
protection fault. 

 Handler creates new 
R/W page, and copies 
the data (copy-on-write)

 Instruction restarts 
upon handler return. 

 Conclusion: Copying 
deferred as long as 
possible!

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-
write

Write

Shared
object

RO

RO
RW

RW
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Finding Shareable Pages

 Kernel Same-Page Merging (deduplication)
▪ OS scans through all of physical memory, looking for duplicate pages

▪ When found, merge into single copy, marked as copy-on-write

▪ Implemented in Linux kernel in 2009

▪ Especially useful in cloud machines, running many VMs

▪ Many security issues have been found related to deduplication 
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User-Level Memory Mapping

void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

 Map len bytes starting at offset offset of the file specified 
by file description fd, preferably at address start

▪ start: may be 0 for “pick an address”

▪ prot: PROT_READ, PROT_WRITE, PROT_EXEC, ...

▪ flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

 Return a pointer to start of mapped area (may not be start)
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User-Level Memory Mapping
void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

len bytes

start

(or address 
chosen by kernel)

Process virtual memoryDisk file specified by 
file descriptor fd

len bytes

offset

(bytes)

0 0
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Uses of mmap

 Reading big files
▪ Uses paging mechanism to bring files into memory

 Shared data structures
▪ When call with MAP_SHARED flag

▪ Multiple processes have access to same region of memory

▪ Risky!

 File-based data structures
▪ E.g., database

▪ Give prot argument PROT_READ | PROT_WRITE

▪ When unmap region, file will be updated via write-back

▪ Can implement load from file / update / write back to file
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Virtual Memory in Real-world

https://raddinox.com/gpu-passthrough-to-windows-11-using-libvirt-qemu
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Summary

 VM requires hardware support
▪ Exception handling mechanism

▪ TLB

▪ Various control registers

 VM requires OS support
▪ Managing page tables

▪ Implementing page replacement policies

▪ Managing file system

 VM enables many capabilities
▪ Loading programs from memory

▪ Providing memory protection


