Systems Programming

Virtual Memory: Systems

Byoungyoung Lee
Seoul National University
byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Review: Virtual Memory & Physical Memory

L, What really happens
Application’s view (by CPU/MMU)
Read .
HEEC Physical memory
VA1l VA1l
Virtual memory 0 Empty
Data K
Page Table 1
0 Empty g 5 Empty
Data B
9 0 Empty Data B
2 Data A
3 — —) PA 3
mpty
2 Disk 0 .
4 Data K Disk
3 Empty
5 Data J 4 A1
6 Empty 0] DataA Data B Data C
—— 5 Disk 9
¢ npy 6 Empty 3| DataD Data E Data F
7 Empty
6| DataG Data H Data |
9| Datal Empty Empty

m A page table contains page table entries (PTEs) that map
virtual pages to physical pages.

Review: Translation Lookaside Buffer (TLB)

m A small cache of page table entries with fast access by MMU

TLB

QI PTE
VPN ve
VA PA
CPU o > MMU a >Cache/
Memory
] Data
5

Typically, a TLB hit eliminates extra memory accesses required
to do a page table lookup.

Today

m Case study: Core i7/Linux memory system (CSAPP 9.7)
m Memory mapping

Intel Core i7 Memory System

Processor package

. Core x4 :
i Registers Instruction MMU i
: 8 fetch (addr translation) i
' X yy 7y !
L1 d-cache L1 i-cache L1 d-TLB L1i-TLB |
| 32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way E
: X A A :
' v v v !
i L2 unified cache L2 unified TLB !
! 256 KB, 8-way 512 entries, 4-way E
i L3 unified cache DDR3 Memory controller E
| 8 MB, 16-way) > 3 x 64 bit @ 10.66 GB/s i
: (shared by all cores) 32 GB/s total (shared by all cores) E

s I_I ________________________

Main memory

End-to-end Core i7 Address Translation

32/64
CPU
< Result |« LZ., L3, and
Virtual address (VA) 1 main memory
36 ¢ 12 -
_‘ VPN | VPO, 11 L1
2 I . hit miss
TLBT | TLBI
| L1 d-cache

! ! ! ! TLB (64 sets, 8 lines/set)

> hit D

TLB > <

miss : :
| | | | | A | A | A | A | | A | A | A I‘_
L1 TLB (16 sets, 4 entries/set)
v9 9 3 9 a0 | | 12 I
VPN1 | VPN2 | VPN3 | VPN4 PPN PPO ' cl lco
T * Physical -
CR3 J > J > address
PTE PTE PTE PTE (PA)

Page tables

Core i7 Level 4 Page Table Entries

63 62 52 51 12 11 9 8 7 6 5 4 3 2 1 0
XD | Unused Page physical base address Unused G D| A |CD|WT|U/SR/W|P=1
Available for OS (page location on disk) P=0

Each entry references a 4K child page. Significant fields:
P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)
D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

Core i7 Page Table Translation

I 12 Virtual
VPN 1 VPN 2 VPN 3 VPN 4 VPO
address
L1 PT L2 PT L3 PT L4 PT
Page global Page upper Page middle Page
40 directory a0 directory a0 directory 4 table
CR3 I, : II : I In
Physical
address Offset into
Ofl.l PT /12 phySicaI and
» L1PTE » L2 PTE » L3PTE — —{ L4PTE virtual page
Physical
address
512 GB 1GB 2 MB 4 KB of page
region region region region
per entry per entry per entry per entry
49
l 7
40 12 ' Physical
PPN PPO

address

Virtual Address Space of a Linux Process

Process-specific data)
structs (ptables,
task and mm structs,
Kernel
kernel stack))
virtual
Physical memory memory
Kernel code and data)
User stack)
%rSpP — ‘
Memory mapped region
for shared libraries
Process
brk t > virtual
Runtime heap (malloc) memory
Uninitialized data (.bss)
Initialized data (.data)
0x00400000 —,| _Program text (.text)

Today

m Case study: Core i7/Linux memory system (CSAPP 9.7)
m Memory mapping

10

Memory Mapping

m VM areas are be backed by (i.e., get its initial page from) :
= Regular file on disk (e.g., an executable object file)
= |nitial page bytes come from a section of a file
= Anonymous file (e.g., nothing)
= First fault will allocate a physical page full of O's (demand-zero page)
= Once the page is written to (dirtied), it is like any other page

m Dirty pages are copied back and forth between memory and a
special swap file.

11

Review: Memory Management & Protection

m Code and data can be isolated or shared among processes

Address)
Virtual 0 lati 0 Physical
Address Data A transiation Address
Space for Code B DataA | Space
Process 1: (DRAM)
N-1
(e.g., read-only
Code B library code)
: 0
Virtual 5 DataC
Address Data C
Space for Code B
Process 2:

N-1 M-1

Sharing Revisited: Shared Objects

Process 1

virtual memory

--~ Page Table

for

Process 1

Physical
memory

Shared
object

Process 2

virtual memory

m Process 1 maps the
shared object.

13

Sharing Revisited: Shared Objects

Process 1 Physical Process 2 m Process 2 maps the
virtual memory memory virtual memory same shared object.
o Leparea| e m Notice how the
il RN virtual addresses can
be different.
--~ Page Table N
for Page Table™~
Process 1 for)
Process 2

14

Sharing Revisited:
Private Copy-on-write (COW) Objects

Process 1 Physical Process 2 m Two processes
virtual memory memory virtual memory mapping a private
copy-on-write (COW)
_-=" Shared AN .
-7 object \\ Ob]ECt
Read-only _--~ ~. \\\
*<Read-only’~, o m Area flagged as
S) riv . .
ate i private copy-on-write
copy-on-write _ _
area m PTEs in private areas
are flagged as read-

only

15

Sharing Revisited:
Private Copy-on-write (COW) Objects

Process 1 Physical Process 2 m Instruction writing to

virtual memory memory virtual memory private page triggers
protection fault.

.- Shared
- object

m Handler creates new
R/W page, and copies
the data (copy-on-write)

m Instruction restarts
+«— Write upon handler return.

m Conclusion: Copying
deferred as long as
possible!

16

Finding Shareable Pages

m Kernel Same-Page Merging (deduplication)

OS scans through all of physical memory, looking for duplicate pages
When found, merge into single copy, marked as copy-on-write
Implemented in Linux kernel in 2009

Especially useful in cloud machines, running many VMs

Many security issues have been found related to deduplication ®

17

User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int fd, int offset)

m Map len bytes starting at offset of £set of the file specified
by file description £d, preferably at address start
= start: may be 0 for “pick an address”
= prot: PROT_READ, PROT_WRITE, PROT_EXEC, ...
= flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

m Return a pointer to start of mapped area (may not be start)

18

User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int fd, int offset)

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ N
‘‘‘ | Len bytes
et y -
....................................... (or address
len bytes< | | chosen by kernel)
offset —s L
(bytes)
0 0
Disk file specified by Process virtual memory
file descriptor £d4

19

Uses of mmap

m Reading big files

= Uses paging mechanism to bring files into memory

m Shared data structures
" When call with MAP SHARED flag
= Multiple processes have access to same region of memory
= Risky!
m File-based data structures

= E.g., database
" Give prot argument PROT READ | PROT WRITE

= When unmap region, file will be updated via write-back
= Can implement load from file / update / write back to file

20

Virtual Memory in Real-world

virtual memory

guest physical memory

host physical memory

virtual machine

applications

guest
operating system

e

I hypervisor I

Virtual layer

il

Virtual address space

https://raddinox.com/gpu-passthrough-to-windows-11-using-libvirt-gemu

21

Summary

m VM requires hardware support

= Exception handling mechanism
= TLB
= Various control registers

m VM requires OS support
= Managing page tables
" |mplementing page replacement policies
" Managing file system

m VM enables many capabilities

= Loading programs from memory
" Providing memory protection

22

