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Review: Virtual Memory & Physical Memory
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m A page table contains page table entries (PTEs) that map
virtual pages to physical pages.



Review: Translation Lookaside Buffer (TLB)

m A small cache of page table entries with fast access by MMU
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Typically, a TLB hit eliminates extra memory accesses required
to do a page table lookup.



Today

m Case study: Core i7/Linux memory system (CSAPP 9.7)
m Memory mapping



Intel Core i7 Memory System

Processor package

_______________________________________________________________________________________________

. Core x4 :
i Registers Instruction MMU i
: 8 fetch (addr translation) i
' X yy 7y !
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End-to-end Core i7 Address Translation
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Page tables



Core i7 Level 4 Page Table Entries

63 62 52 51 12 11 9 8 7 6 5 4 3 2 1 0
XD | Unused Page physical base address Unused G D| A |CD|WT|U/SR/W|P=1
Available for OS (page location on disk) P=0

Each entry references a 4K child page. Significant fields:
P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)
D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.




Core i7 Page Table Translation
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Virtual Address Space of a Linux Process

Process-specific data )
structs (ptables,
task and mm structs,
Kernel
kernel stack) )
virtual
Physical memory memory
Kernel code and data )
User stack )
%rSpP — ‘
Memory mapped region
for shared libraries
Process
brk t > virtual
Runtime heap (malloc) memory
Uninitialized data (.bss)
Initialized data (.data)
0x00400000 —,| _Program text (.text)
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m Case study: Core i7/Linux memory system (CSAPP 9.7)
m Memory mapping
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Memory Mapping

m VM areas are be backed by (i.e., get its initial page from) :
= Regular file on disk (e.g., an executable object file)
= |nitial page bytes come from a section of a file
= Anonymous file (e.g., nothing)
= First fault will allocate a physical page full of O's (demand-zero page)
= Once the page is written to (dirtied), it is like any other page

m Dirty pages are copied back and forth between memory and a
special swap file.
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Review: Memory Management & Protection

m Code and data can be isolated or shared among processes

Address )
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Address Data A transiation Address
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Sharing Revisited: Shared Objects

Process 1

virtual memory

--~ Page Table

for

Process 1

Physical
memory

Shared
object

Process 2

virtual memory

m Process 1 maps the
shared object.
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Sharing Revisited: Shared Objects

Process 1 Physical Process 2 m Process 2 maps the
virtual memory memory virtual memory same shared object.
o Leparea| e m Notice how the
il RN virtual addresses can
be different.
--~ Page Table N
for Page Table™~
Process 1 for )
Process 2
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Sharing Revisited:
Private Copy-on-write (COW) Objects

Process 1 Physical Process 2 m Two processes
virtual memory memory virtual memory mapping a private
copy-on-write (COW)
_-=" Shared AN .
-7 object \\ Ob]ECt
Read-only _--~ ~. \\\
*<Read-only’~, o m Area flagged as
S ) riv . .
ate i private copy-on-write
copy-on-write _ _
area m PTEs in private areas
are flagged as read-

only
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Sharing Revisited:
Private Copy-on-write (COW) Objects

Process 1 Physical Process 2 m Instruction writing to

virtual memory memory virtual memory private page triggers
protection fault.

.- Shared
- object

m Handler creates new
R/W page, and copies
the data (copy-on-write)

m Instruction restarts
+«— Write upon handler return.

m Conclusion: Copying
deferred as long as
possible!
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Finding Shareable Pages

m Kernel Same-Page Merging (deduplication)

OS scans through all of physical memory, looking for duplicate pages
When found, merge into single copy, marked as copy-on-write
Implemented in Linux kernel in 2009

Especially useful in cloud machines, running many VMs

Many security issues have been found related to deduplication ®
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User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int fd, int offset)

m Map len bytes starting at offset of £set of the file specified
by file description £d, preferably at address start
= start: may be 0 for “pick an address”
= prot: PROT_READ, PROT_WRITE, PROT_EXEC, ...
= flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

m Return a pointer to start of mapped area (may not be start)
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User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int fd, int offset)

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ N
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ | Len bytes
et y -
....................................... (or address
len bytes< | | chosen by kernel)
offset —s L
(bytes)
0 0
Disk file specified by Process virtual memory
file descriptor £d4
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Uses of mmap

m Reading big files

= Uses paging mechanism to bring files into memory

m Shared data structures
" When call with MAP SHARED flag
= Multiple processes have access to same region of memory
= Risky!
m File-based data structures

= E.g., database
" Give prot argument PROT READ | PROT WRITE

= When unmap region, file will be updated via write-back
= Can implement load from file / update / write back to file
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Virtual Memory in Real-world

virtual memory

guest physical memory

host physical memory

virtual machine

applications

guest
operating system

e

I hypervisor I

Virtual layer

il

Virtual address space

https://raddinox.com/gpu-passthrough-to-windows-11-using-libvirt-gemu
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Summary

m VM requires hardware support

= Exception handling mechanism
= TLB
= Various control registers

m VM requires OS support
= Managing page tables
" |mplementing page replacement policies
" Managing file system

m VM enables many capabilities

= Loading programs from memory
" Providing memory protection
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