Systems Programming

Virtual Memory: Concepts

Byoungyoung Lee
Seoul National University
byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Hmmm, How Does This Work?!

O0O007FFFFFFFFFFF

400000
000000

Solution: Virtual Memory

Process 1

Stack

Process 2

1

Stack

1

Shared
Libraries

Shared
Libraries

Heap

Data

Heap

Text

Data

Text

0O0007FFFFFFFFFFF
e o o

400000

000000

Process n

Stack

1

Shared
Libraries

Heap

Data

Text

Today

m Address spaces CSAPP 9.1-9.2
m VM as a tool for caching CSAPP 9.3
m VM as a tool for memory management CSAPP 9.4
m VM as a tool for memory protection CSAPP 9.5
m Address translation CSAPP 9.6

Physical Addressing

Main memory

0:

1:

Physical address 2:
(PA) 3:

CPU 7 —> 4:

®NOW

Data word

m Used in “simple” systems like embedded microcontrollers in devices
= ECUs in automobiles, elevators, sensors, and digital picture frames

Virtual Addressing

Main memory

0:
CPUC%#) 1:
Virtual address Physical address g
(VA) (PA) '
CPU > MMU 7 —> 4.
4100 5:
A
6:
7:
8:
M-1
Data word

m Used in all modern servers, laptops, and smart phones
m One of the great ideas in computer science

Address Spaces

m Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3,.. N-1}

m Physical address space: Set of M = 2™ physical addresses
{0,1,2,3,.. M-1}

m Inpractice, N>>M

Why Virtual Memory (VM)?

m Uses main memory efficiently
= Addressing more than physical memory (e.g., DRAM) has

m Simplifies memory management
= Each process gets the same uniform address space

m Isolates address spaces
" One process can’t interfere with another’s memory
= User program cannot access privileged kernel information and code

Today

Address spaces
VM as a tool for caching

0
0
m VM as a tool for memory management
m VM as a tool for memory protection

[

Address translation

VM as a Tool for Caching

m All the data is initially stored in disk

m The datain disk is cached in physical memory (DRAM)
= These cache blocks are called pages (the size of each page is 2P bytes)
® This DRAM cache is not CPU cache!

m Virtual memory provides imaginary/virtual memory view for applications

. Disk
Virtual memory
0 Empty Physical memory 0| DataA Data B Data C
1
Data B 0 Empty 3] DataD Data E Data F
2 Data A 1 Data K
3 Empty 2 Empty 6| DataG Data H Datall
4 Data K 3 Data B
5 Data J 9| Datal Empty Empty
6 Empty
7 Empty
Application’s view on memory How the data is stored in reality

Design Consideration on Caching

m DRAM is much faster than disk
= Disk is about 10,000x slower than DRAM

m Consequences
= Fully associative
= Any virtual page (VP) can be placed in any physical page (PP)
= Requires a “large” mapping function — different from cache memories
= Highly sophisticated, expensive replacement algorithms
= Too complicated and open-ended to be implemented in hardware

10

Enabling Data Structure: Page Table

m A page table is an array of page table entries (PTEs)
= Per-process kernel data structure in the main memory
m A page table maps virtual memory to physical memory.
® |t maps from “imaginary memory view” to “real-world memory view”
"= Note: page tables do not map to the disk, but here we simply assumed so for simplicity

Physical memory
Virtual memory 0 Empty
1 Data K
0 Empty 2 Empty
1 Data B 3 Data B
2 Data A
3 Empty Disk
4 | Datak Page Tables
5 Data J O] DataA Data B Data C
6 Empty 3| DataD Data E Data F
7 Empty
6| DataG Data H Data |
9| DataJ Empty Empty
Application’s view i i i
How the data is stored in reality

on memory

Page Hit

m Page hit: reference to VM word that is in physical memory

Application’s view

What really happens
(by CPU/MMU)

Read
VA1l
Virtual memory
0 Empty
——tPp| Data B
2 Data A
3 Empty
4 Data K
5 Data J
6 Empty
7 Empty

R .
2 Physical memory
VA1l
0 Empty
Data K
Page Table 1 4
2 Empty
2 Disk O .
Disk
3 Empty
4 PAL 0| DataA Data B Data C
5 Disk 9
6 Empty 3] DataD Data E Data F
7 Empty
6| DataG Data H Data |
9| Datal Empty Empty

12

Page Fault (1)

m Page fault: reference to VM word that is neither in physical memory nor disk

- i What really happens
Application’s view (by CPU/MMU)
Read R .
2 Physical memory
VA 3 VA3
Virtual memory 0 Empty
Data K
Page Table 1
Cl) Empty g , Empty
Data B
0 Empty 3 Data B
2 Data A
4 Datz l o :
Disk
5 Data J 4 7
6 Empty 0| DataA Data B Data C
— 5 Disk 9
m
¢) 6 Empty 3] DataD Data E Data F
7 Empty
6| DataG Data H Datal
9| Datal Empty Empty

Page Fault (2)

m Page fault: reference to VM word, not in physical memory but in disk

- i What really happens
Application’s view (by CPU/MMU)
Read R .
20 Physical memory
VA 2 VA 2
Virtual memory 0 Empty
Data K
Page Table 1
Cl) Empty g , Empty
Data B
0 Empty 3 Data B
é Data A
3 —— 1 PA 3
m
) 3! Disk 0 .
4 Data K Disk
3 Empty
5 Data J 4 N
6 Empty O]l DataA Data B Data C
— 5 Disk 9
m
¢) 6 Empty 3] DataD Data E Data F
7 Empty
6| DataG Data H Data |
9| Datal Empty Empty

Triggering a Page Fault

m User writes to memory location

80483b7: c7 05 10 9d 04 08 0d movl $0xd, 0x8049d10

m That portion (page) of user’s memory may be stored in disk
m MMU triggers page fault exception

= (More details in later lecture)
® Raise privilege level to supervisor mode
® Causes procedure call to software page fault handler

User code Kernel code

l Exception: page fault

movl

| Execute page fault
handler

15

Handling Page Fault

m If data is neither in physical memory nor in disk
= A page fault cannot be recovered
" The user code may need to be terminated

m If data is not in physical memory but in disk
= A page fault can be recovered
" The kernel code will load the data in disk to the physical memory
"= Then re-execute the instruction, which raised the page fault

16

Handling Page Fault (1)

m Page miss causes page fault (an exception)

What really happens

. . ’ .
Application’s view (by CPU/MMU/Kernel)
Read Read 0 Data C
VA5 VA5
. Data K :
Virtual memory 1 Physical memory
2 Data H
0 [Empty Page Table 3| DataB
1 Data B 0 Ermot
m
2 Data A 1 pApgy
3 Empty 0| DataA Data B Data C
2 Disk 0
4 Data K
3 Empty 3| DataD Data E Data F
4 PA1l
6 Data C 3| Disko o 6| DataG Data H Data |
Data H s
6 9| Datal Empty Empty
7 PA 2

Disk

17

Handling Page Fault (2)

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here “Data H” at “VA 7” or “PA 2”)
. What really happens
Appllcatlon s view (by CPU/MMU/KerneI)
Read Read 0 Data C
VA5 VA5
. Data K .
Virtual memory ! Physical memory
2 H
0 Empty Page Table 3| DataB
1 Data B 0 ——
m

2 Data A Py
1 PA 3

3 Empty 0| DataA Data B Data C
2 Disk 0

4 Data K
3 Empty 3] DataD Data E Data F
4 PA 1

6 Data C S| Disk o o 6| DataG Data H Data |

Data H G

6 9| Datal Empty Empty
7 PA 2

Disk

18

Handling Page Fault (3)

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here “Data H” at “VA 7” or “PA 2”)
y What really happens
Appllcatlon S view (by CPU/MMU/KerneI)
Read Read 0| Datac
VA 5 VA 5
. Data K :
Virtual memory ! Physical memory
2
0 Empty Page Table 3| DataB
1 Data B 0 ——
m
2 Data A Py
1 PA 3
3 Empty 0| DataA Data B Data C
2 Disk 0
4 Data K
3 Empty 3| DataD Data E Data F
4 PA 1
6 Data C 3| Disko o 6| DataG Data H Data |
Data H s
6 Empty Empty
7

9| Datal

Disk

19

Handling Page Fault (4)

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here “Data H” at “VA 7” or “PA 2”)
m Page fault handler loads the target page from disk (here “Data J” at “Disk 9”)
. What really happens
Appllcatlon S view (by CPU/MMU/KerneI)
Read Read 0| Datac
VA 5 VA 5
. 1 Data K .
Virtual memor Physical memory
Y o [_patas |
0 Empty Page Table 3| DataB
1 Data B 0 ——
2 Data A TRy
1 PA 3
3 Empty - 0| DataA Data B Data C
2 Disk 0
45 Data ¥ Empt 3| DpataD Data E DataF
Data J j Ir:;\ply ata ata ata
6 |Ibataic 6| DataG Data H Data |
) Empty Empty
— o]

20

Handling Page Fault (5)

m Page miss causes page fault (an exception)
m Page fault handler selects a victim to be evicted (here “Data H” at “VA 7” or “PA 2")
m Page fault handler loads the target page from disk (here “Data J” at “Disk 9”)
m Offending instruction is restarted: page hit!
o What really happens
Appllcatlon S view (by CPU/MMU/KerneI)
Read Read 0| Datac
VA 5 VA 5
. 1 Data K .
Virtual memor Physical memory
Y o [_patas |
0 Empty Page Table 3| DataB
1 Data B 0 ——
2 Data A TRy
1 PA3
3 Empty - 0| DataA Data B Data C
2 Disk 0
45 Data ¥ Empt 3| DpataD Data E DataF
Data J j Ir:;\ply ata ata ata
6 |Ibataic 6| DataG Data H Data |
Data H ? :25
9 Empty Empty
* o o]

21

Completing page fault

m Page fault handler executes “return from interrupt” (iret) instruction
® Like ret instruction, but also restores privilege level
= Return to instruction that caused fault
= But, this time there is no page fault

80483b7: c7 05 10 9d 04 08 0d movl $0xd, 0x8049d10

User code Kernel code

l Exception: page fault

movl >
\\ COpy page_from
Return and disk to memory

reexecute movl e

v

Locality to the Rescue Again!

m In practice, VM with paging surprisingly efficient
= because of locality.

m At any point in time, programs tend to access a set of active
virtual pages called the working set

= Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size)
= Good performance for one process

m If (working set size > main memory size)

" Thrashing: Performance meltdown where pages are swapped (copied)
in and out continuously

= |f multiple processes run at the same time, thrashing occurs if
their total working set size > main memory size

23

Today

Address spaces
VM as a tool for caching

|
|
m VM as a tool for memory management
m VM as a tool for memory protection

|

Address translation

24

VM as a Tool for Memory Management

m Key idea: each process has its own virtual address space

" |t can view memory as a simple linear array

Address
translation)
Virtual 0 0 Physical
Address Data A — Address
Page Table
Space for Code B ~ f — > DataA | Space
Process 1: or (DRAM)
Process 1
N-1
(e.g., read-only
Code B library code)
) 0
Virtual Page Table > Data C
Address DataC —— for
Process 2:

N-1 M-1

VM as a Tool for Memory Management

m Simplifying memory allocation

= Each virtual page can be mapped to any physical page

= Avirtual page can be migrated to a different physical page
m Sharing code and data among processes
= Map multiple virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for

Process 1:

Virtual
Address
Space for

Process 2:

0

N-1

N-1

0

Data A — Page Table
Code B \ for T > pataA
Process 1
Code B
Page Table
for _’; Data C
DataC ——
Code B / Process 2

Physical
Address
Space

(DRAM)

(e.g., read-only
library code)

26

Today

Address spaces
VM as a tool for caching

H
H
m VM as a tool for memory management
m VM as a tool for memory protection

H

Address translation

27

VM as a Tool for Memory Protection

m Extend PTEs with permission bits
m MMU checks these bits on each access

Page Table for Process i Physical
SUP READ WRITE EXEC Address Memory
VA 0: No Yes No Yes PA 6 0
VA 1: No Yes Yes Yes PA 4 1
VA 2: Yes Yes Yes No PA 2 2
E 4
5
Page Table for Process j 6
SUP READ WRITE EXEC Address /
VAO:| No Yes No Yes PA 9 z
VA1l:| Yes Yes Yes Yes PA 6 / 10
VA2:| No Yes Yes Yes PA 11 —> 11

SUP: requires kernel mode

Today

Address spaces
VM as a tool for caching

N
N
m VM as a tool for memory management
m VM as a tool for memory protection

N

Address translation

29

Address Translation: Page Hit
(2

CPU Chip
o PTEA Y
PTE
<7
CPU VA 5 mmu 5
PA Y

Data

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

Page Table

Cache/
Memory

30

Address Translation: Page Fault

CPU Chip

CPU

MMU

Exception

Page fault handler

PTE > Page Table
Cache/
Memory

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

iy

Victim page

New page

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

Disk

31

Speeding up Translation with a TLB

m Address translation can be slow
= Page table entries (PTEs) should be stored in memory
= Every memory access through VA would results in two memory accesses
= #1. To translate VA to PA, accessing PTE
= #2. Fetch the data using PA

" Two memory accesses? Can we make it faster?

m ldea: Translation Lookaside Buffer (TLB)

= Small set-associative hardware cache in MMU
= Cache a subset of page table entries
= virtual page numbers to physical page numbers

32

TLB Hit

CPU Chip
TLB
Q PTE
VPN e
o Page Table
VA PA
>
CPU MMU G Cache/
] Memory
Data

A TLB hit eliminates a slow memory/cache access

33

TLB Miss

CPU Chip
TLB
Q ° PTE
VPN
Page Table
3 OPTEA - g
CPU > MMU
PA
> Cache/
a Memory
Data

A TLB miss incurs an additional cache/memory access (the PTE)
Fortunately, TLB misses are rare. Why?

Multi-Level Page Tables

m Suppose: Level 2
" 4KB (21?) page size, 48-bit address space, 8-byte PTE Tables

m Problem: Level 1

= Would need a 512 GB page table! Table

. 248 % 212 % 23 = 239 hytes]l _—

m Common solution: Multi-level page table :

m Example: 2-level page table

" |L1:each L1 PTE points to a L2 pagetable
(always memory resident)

= |2:each L2 PTE points to a page

(paged in and out like any other data)

A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
VPO
PTE 0 — [emo
VP 1023
PTEL VP 1024
PTE 2 (null) PTE 1023
PTE 3 (null)
VP 2047
PTE 4 (null) PTE 0
PTE 5 (null)
PTE 6 (null) PTE 1023
PTE 7 (null) Gap
PTE 8 .
1023 null
(1K - 9) PTEs
null PTEs PTE 1023 1023
unallocated
pages
VP 9215

64 bit addresses, 8KB pages, 8-byte PTEs

AN

2K allocated VM pages
for code and data

>

> 6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

36

Translating with a k-level Page Table

Components of the virtual address (VA)
VPO: Virtual page offset
VPN: Virtual page number
Components of the physical address (PA)
PPO: Physical page offset (same as VPO)

Page table)
basg register PPN: Physical page number
(PTBR)
VIRTUAL ADDRESS
n-1 p-1 0
VPN 1 VPN 2 VPN k VPO
the Level 1 a Level 2 a Level k
page table page table page table
) > YY) .o >
» PPN [}—
m'l y p'l \ 4 0
PPN PPO

PHYSICAL ADDRESS

37

Summary

m Programmer’s view of virtual memory
= Each process has its own private linear address space
= Cannot be corrupted by other processes

m System view of virtual memory
= Uses memory efficiently by caching virtual memory pages
= Efficient because of locality
= Simplifies memory management and programming

= Simplifies protection by providing a convenient interpositioning point
to check permissions

m Implemented via combination of hardware & software
= MMU, TLB, exception handling mechanisms part of hardware
= Page fault handlers, TLB management performed in software

38

