
Carnegie Mellon

1

Systems Programming

Dynamic Memory Allocation:
Advanced Concepts

Byoungyoung Lee

Seoul National University

byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

GC slides are based on materials of Alan Cox at Rice University.

Textbook coverage:

Ch 9.10: Garbage collection

Ch 9.11: Common memory-related bugs in C programs

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Carnegie Mellon

2

Review: Dynamic Memory Allocation

 Programmers use dynamic
memory allocators (such as
malloc) to acquire memory at
runtime

 Dynamic memory allocators
manage an area of process VM
known as the heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp

(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Run-time heap
(created by malloc)

Carnegie Mellon

3

Review: Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g., Red-Black tree) with pointers within

each free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

4

Review: Implicit Lists Summary
 Implementation: very simple

 Allocate cost:
▪ linear time worst case

 Free cost:
▪ constant time worst case

▪ even with coalescing

 Memory Overhead:
▪ Depends on placement policy

▪ Strategies include first fit, next fit, and best fit

 Not used in practice for malloc/free because of linear-
time allocation

 However, the concepts of splitting and coalescing are general
to all allocators

Carnegie Mellon

5

Today

 Explicit free lists

 Segregated free lists

 Garbage collection

 Security issues related to dynamic memory

Carnegie Mellon

6

Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

7

Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
▪ Luckily we track only free blocks, so we can use payload area

➔ Reduce internal fragmentation

▪ Store forward/back pointers

▪ A pointer points to a free block, allowing to only traverse free blocks

Size

Payload and
padding

a Size a

Next

Prev

Allocated (as before) Free

Carnegie Mellon

8

Explicit Free Lists

 Logically:

 Physically: blocks can be in any order

A B C

32 32 48 3232

Forward (next) links

Back (prev) links

A B

C

Carnegie Mellon

9

Freeing With Explicit Free Lists

 Policy: inserting a freed block back to the free list
▪ Where should you put a newly freed block in the free list?

 List-friendly policy
▪ LIFO (last-in-first-out) policy

▪ Insert freed block at the beginning of the free list

▪ FIFO (first-in-first-out) policy

▪ Insert freed block at the end of the free list

 Address-ordered policy

▪ Insert freed blocks so that free list blocks are always in address order:

addr(prev) < addr(curr) < addr(next)

Carnegie Mellon

10

Explicit List Summary

 Comparison to implicit list:
▪ Allocate is linear time in number of free blocks instead of all blocks

▪ Much faster when most of the memory is full

▪ Slightly more complicated allocate and free

▪ because need to splice blocks in and out of the list

Carnegie Mellon

11

Today

 Explicit free lists

 Segregated free lists

 Garbage collection

 Security issues related to dynamic memory

Carnegie Mellon

12

Segregated List (Seglist) Allocators

 Each size class of blocks has its own free list

 Often have separate classes for each small size

1 - 3

4 - 6

7 - Inf.

Carnegie Mellon

13

Seglist Allocator

 Given an array of free lists, each one for some size class

 To allocate a block of size n:
▪ Search appropriate free list for block of size m > n (i.e., first fit)

▪ If an appropriate block is found:

▪ Split block and then allocate

– Insert the free-fragment in the appropriate free list

▪ If no block is found, try next larger class

 If no block is found in the end:
▪ Request additional heap memory from OS (using sbrk())

▪ Allocate block of n bytes from this new memory

▪ Insert remainder as a single free block in appropriate size class.

Carnegie Mellon

14

Seglist Allocator (cont.)

 To free a block:
▪ Coalesce and place on appropriate list

 Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
▪ Higher throughput

▪ Constant-time vs. Linear time

▪ Better memory utilization

▪ Seglist allocator (first-fit) avoids unnecessary splits

▪ First-fit search of segregated free list approximates a best-fit

search of entire heap.

Carnegie Mellon

15

Memory Allocators in Real-world

 Real-world allocator designs are more complex than you
may imagine!

 tcmalloc (by Google)
▪ https://google.github.io/tcmalloc/design.html

 SLUB allocator (Linux Kernel)
▪ https://compsec.snu.ac.kr/buildtex/pspray-e807cf40.pdf

https://google.github.io/tcmalloc/design.html
https://compsec.snu.ac.kr/buildtex/pspray-e807cf40.pdf

Carnegie Mellon

16

More Info on Allocators

 D. Knuth, The Art of Computer Programming, vol 1, 3rd

edition, Addison Wesley, 1997
▪ The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
▪ Comprehensive survey

Carnegie Mellon

17

Today

 Explicit free lists

 Segregated free lists

 Garbage collection

 Security issues related to dynamic memory

Carnegie Mellon

18

Explicit Memory
Allocation/Deallocation

 Explicit Memory Allocation/Deallocation

▪ + Usually low time- and space-overhead

▪ - Challenging for developers to use correctly

▪ e.g., Lead to crashes, memory leaks, etc.

Carnegie Mellon

19

Implicit Memory Deallocation

 Implicit Memory Deallocation!
▪ + Easy to use

▪ Programmers don’t need to free data explicitly

▪ - Price to pay

▪ Depends on implementation

 Q. HOW could a memory manager know

when to deallocate data

without instruction from programmer?

Carnegie Mellon

20

Implicit Memory Management:
Garbage Collection
 Garbage collection

▪ Automatic reclamation of heap-allocated storage

▪ Applications never have to free

 Common in functional languages and modern object oriented
languages:
▪ C#, Go, Java, Lisp, Python, Scala, Swift

 Variants: Conservative garbage collectors
▪ Cannot collect all garbage

▪ e.g., V8 JavaScript engine (Chrome)

void foo() {

int *p = malloc(128);

return; /* p block is now garbage */

}

Carnegie Mellon

21

Garbage Collection

 How does the memory manager know when memory can
be freed?
▪ In general we cannot know what is going to be used in the future

▪ But, we can tell that certain blocks cannot be used

▪ if there are no pointers to them

 Need to make certain assumptions about pointers
▪ Memory manager can distinguish pointers from non-pointers

▪ All pointers point to the start of a block

▪ Cannot hide pointers

▪ e.g., by casting them to an int, and then back again

Carnegie Mellon

22

Classical GC algorithms

 Reference counting (Collins, 1960)

 Mark and sweep collection (McCarthy, 1960)

 For more information, see Jones and Lin, “Garbage
Collection: Algorithms for Automatic Dynamic Memory”,
John Wiley & Sons, 1996.

Carnegie Mellon

23

Memory as a Graph

▪ Node: Each data block is a node in the graph

▪ Edge: Each pointer is an edge in the graph

▪ Root nodes: locations not in the heap that contain pointers into the heap

▪ You never know the heap address at the program loading time

▪ So your initial reference should begin with the pointers in non-heap space

– e.g., registers, stack variables, global variables

Root nodes

Heap nodes

unreachable

(garbage)

reachable

Carnegie Mellon

24

Reference Counting

 Overall idea
▪ Maintain a free list of unallocated blocks

▪ Maintain a count of the number of references in each allocated
block

▪ To allocate, grab a sufficiently large block from the free list

▪ When a count goes to zero, deallocate it

Carnegie Mellon

25

Reference Counting: More Details

 Each allocated block keeps a count of references to the block
▪ Reachable → count is positive

▪ Compiler inserts counter increments and decrements as necessary

▪ Deallocate when count goes to zero

 Typically built on top of an explicit deallocation memory
manager
▪ All the same implementation decisions as before

▪ E.g., splitting (during allocation) & coalescing (during free)

3

Carnegie Mellon

26

Reference Counting: Example

node_t *a = gen_node(10,NULL);

node_t *b = gen_node(20,a);

a = b;

b = …
a = …

struct node {

int value;

struct node *next;

};

typedef struct node node_t;

node_t *gen_node(int v, node_t *next) {

node_t *p = malloc(sizeof(node_t));

p->value = v;

p->next = next;

return p;

}

Carnegie Mellon

27

Reference Counting: Example

node_t *a = gen_node(10,NULL)

node_t *b = gen_node(20,a)

a = b

b = …
a = …

1 10a

Carnegie Mellon

28

Reference Counting: Example

node_t *a = gen_node(10,NULL)

node_t *b = gen_node(20,a)

a = b

b = …
a = …

2 10a

b 1 20

Carnegie Mellon

29

Reference Counting: Example

node_t *a = gen_node(10,NULL)

node_t *b = gen_node(20,a)

a = b

b = …
a = …

1 10

a

b 2 20

Carnegie Mellon

30

Reference Counting: Example

node_t *a = gen_node(10,NULL)

node_t *b = gen_node(20,a)

a = b

b = …
a = …

1 10

a

1 20

Carnegie Mellon

31

Reference Counting: Example

node_t *a = gen_node(10,NULL)

node_t *b = gen_node(20,a)

a = b

b = …
a = …

1 10

0 20

To be deallocated

Carnegie Mellon

32

Reference Counting: Example

node_t *a = gen_node(10,NULL)

node_t *b = gen_node(20,a)

a = b

b = …
a = …

0 10

To be deallocated

Carnegie Mellon

33

Reference Counting: Example

node_t *a = gen_node(10,NULL)

node_t *b = gen_node(20,a)

a = b

b = …
a = …

Good.
All deallocated in the end!

Carnegie Mellon

34

Reference Counting: Problem

 What’s the problem?

1

No other pointer to this data, so can’t be referenced.
But count is not zero, so never deallocated

Following does NOT hold:

Count is positive → reachable

Can occur with any cycle

Carnegie Mellon

35

Reference Counting: Summary

 Disadvantages:
▪ Managing & testing counts is generally expensive

▪ Can optimize

▪ Doesn’t work with cycles!

▪ Approach can be modified to work, with difficulty

▪ All web browsers including Chrome/Firefox heavily rely on the
reference counting with C++ (or smart pointers)

 Advantage:
▪ Simple

▪ Easily adapted, e.g., for parallel or distributed GC

Carnegie Mellon

36

GC Without Reference Counts

 If don’t have counts, how to deallocate?

 Determine reachability by traversing pointer graph
directly
▪ Stop user’s computation (stop the world) periodically to compute

reachability

▪ Deallocate anything unreachable

Carnegie Mellon

37

Mark & Sweep

 Overall idea
▪ Maintain a free list of unallocated blocks

▪ To allocate, grab a sufficiently large block from free list

▪ When no such block exists, GC

▪ Should find blocks & put them on free list

Carnegie Mellon

38

Mark & Sweep: GC

 Follow all pointers, marking all reachable data
▪ Use depth-first search (or breadth-first search)

▪ Data must be tagged with its type information, so GC knows its size and
can identify pointers

▪ So you shouldn’t have integer-pointer casting.

▪ Each piece of data must have a mark bit

 Sweep over all heap, putting all unmarked data into a free list

Carnegie Mellon

39

Mark & Sweep: GC Example

Root pointers:

Heap:

Assume fixed-sized, single-pointer data blocks, for simplicity.

Unmarked= Marked=

Carnegie Mellon

40

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

Carnegie Mellon

41

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

Carnegie Mellon

42

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

Carnegie Mellon

43

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

Carnegie Mellon

44

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

Carnegie Mellon

45

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

Carnegie Mellon

46

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

Carnegie Mellon

47

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

Carnegie Mellon

48

Mark & Sweep: GC Example

Root pointers:

Heap:

Unmarked= Marked=

Free list:

Carnegie Mellon

49

Mark & Sweep: Summary

 Advantages:
▪ No time/space overhead for reference counts

▪ Handles cycle references

 Disadvantage:
▪ Noticeable pauses for GC

▪ Time/space overhead for keeping track of pointers/references

Carnegie Mellon

50

NOTE: Conservative GC

 Goal
▪ Allow GC in C-like languages

 Usually a variation of Mark & Sweep

 Must conservatively assume that integers and other data
can be cast to pointers
▪ Compile-time analysis to see when this is definitely not the case

▪ Coding style heavily influences effectiveness

Carnegie Mellon

51

GC Summary

 Safety
▪ GC: not programmer-dependent

▪ Explicit malloc/free: programmer-dependent

 Time overhead
▪ GC: Higher time overhead

▪ Generally less predictable time overhead

▪ Explicit malloc/free: lower time overhead

 Space overhead
▪ GC: Generally higher space overhead (for extra metadata)

▪ Explicit malloc/free: less space overhead

Carnegie Mellon

52

Today

 Explicit free lists

 Segregated free lists

 Garbage collection

 Security issues related to dynamic memory

Carnegie Mellon

53

Security issues related to dynamic memory

 Uninitialized memory use

 Heap overflow
▪ Use the memory beyond the block boundary

 Double-free
▪ Freeing blocks multiple times

 Use-after-free
▪ Using a (dangling) pointer after the pointed block is freed

Heap Overflow: K&R Malloc

• Maintain a free list
• A linked list of free chunks

• prev/next pointers per free chunk

• An object is allocated by splitting up the free chunk

• Free chunks are merged if possible

54

Heap Overflow: Free chunks in K&R Malloc

55

Allocated
Obj A

Free
chunk

Allocated
Obj B

prev next
Free

chunk
prev next

Allocated
Obj C

Allocated
Free

chunk
To be freeprev next

Free
chunk

prev next Allocated

Allocated
(merged)

Free chunk
prev next Allocated

free(B)

merging
Free chunks

Should be updated:
node->prev->next = node->next; node

Heap Overflow: Overflowing Metadata

56

Allocated
Obj A

Free
chunk

Allocated
Obj B

prev next
Free

chunk
prev next

Allocated
Obj C

Allocated
(merged)

Free chunk
prev next Allocated

free(B)

merging
Free chunks

Allocated
Free

chunk
To be freeprev next

Free
chunk

prev next Allocated

Suppose overflow occurs on Obj B
➔ prev and next are overwritten

Heap Overflow: Free chunks in K&R Malloc

• Suppose overflow occurs on Obj B

57

char *p =malloc(16);

// …

memcpy(p, src, 32);

Heap Overflow: Overflowing Metadata

58

Allocated
Obj A

Free
chunk

Allocated
Obj B

prev next
Free

chunk
prev next

Allocated
Obj C

Allocated
(merged)

Free chunk
prev next Allocated

free(B)

merging
Free chunks

Updating the linked list for merging
node.prev->next = node.next;

➔ Transform heap overflow into arbitrary memory write vulnerability

Use-after-free

• Root cause: a dangling pointer
• A pointer points to a freed memory region

• Exploitation step:
• 1) Trigger free (dangling pointer is created)

• 2) Overwrite the freed region with the object having a different type

• 3) Use a dangling pointer

59

class Doc : public Element {
// …
Element *child;

};

class Body : public Element {
// …
Element *child;

};

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body;

delete body;

doc->child->getAlign();

Use-after-free: An example from Chromium

60

An example from Chromium

61

*doc

*body

Doc

Body

Doc *doc = new Doc();
Body *body = new Body();

doc->child = body;

delete body;

doc->child->getAlign();

*child

*child
freed

Use a dangling pointer

Free an object

Propagate pointers

Allocate objects

a dangling pointer

Use-after-free

Exploitation with Heap Spray

62

Doc

Body

Doc

Freed

Doc

Freed

X

X

X

X

X

X

Doc

Freed

X

X

X

X

X

X

1) Trigger
Free

2) Spraying X
(X is under
attacker’s
control)

3) Use
the dangling

pointer

Using the dangling pointer leads to control-flow hijacks
➔Most C++ objects have virtual function pointer table (polymorphic classes)

Dangling pointer

How to Spray Heap

• Heap Spray: Attacker somehow needs to control memory allocators

• Different heap spray methods depending on target platforms
• Web Browsers

• Input: HTML

• A long list of specific HTML tag blocks

• Browser (renderer) executes a dedicated allocation routine per HTML tag

• JavaScript
• Input: JavaScript

• Directly allocate from JavaScript (e.g., new[])

• JS engine will allocate the object when interpreting the attacker-provided script

• Kernel
• Input: syscalls

• Keep invoking a specific syscall (with well-crafted parameters)

• Kernel executes a dedicated allocation for each syscall

63

