
Carnegie Mellon

1

Systems Programming

Dynamic Memory Allocation:
Basic Concepts

Byoungyoung Lee

Seoul National University

byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

Textbook coverage:

Ch 9.9: Dynamic Memory Allocation

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Carnegie Mellon

2

Today

 Basic concepts

 Implicit free lists

Carnegie Mellon

3

Dynamic Memory Allocation

 Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at runtime

 Dynamic memory allocators
manage an area of process
VM known as the heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp

(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Run-time heap
(created by malloc)

Carnegie Mellon

4

Dynamic Memory Allocation

 Allocator maintains heap as a set of blocks, which are
either allocated or free

 Types of allocators
▪ Explicit allocator: application allocates and frees space

▪ e.g., malloc and free in C

▪ e.g., new and delete operators in C++

▪ Implicit allocator: allocation is explicit, but free is implicit

▪ e.g., Smart pointers in C++

▪ e.g., garbage collection in Java

 Will discuss simple explicit memory allocation today

Carnegie Mellon

5

The malloc Package

void *malloc(size_t size)

▪ Successful:

▪ Returns a pointer to a memory block of at least size bytes
aligned to a 16-byte boundary (on x86-64)

▪ If size == 0, returns NULL

▪ Unsuccessful: returns NULL and sets errno

void free(void *p)

▪ Returns the block pointed at by p to pool of available memory

▪ p must come from a previous call to malloc, calloc, or realloc

Other functions

▪ calloc: Version of malloc that initializes allocated block to zero

▪ realloc: Changes the size of a previously allocated block

▪ sbrk: Used internally by allocators to grow or shrink the heap

Carnegie Mellon

6

malloc Example
#include <stdio.h>

#include <stdlib.h>

void foo(long n) {

long i, *p;

/* Allocate a block of n longs */

p = (long *) malloc(n * sizeof(long));

if (p == NULL) {

perror("malloc");

exit(0);

}

/* Initialize allocated block */

for (i=0; i<n; i++)

p[i] = i;

/* Do something with p */

. . .

/* Return allocated block to the heap */

free(p);

}

Carnegie Mellon

7

Visualization Conventions

 Show 8-byte words as squares

 Allocations are double-word aligned

Allocated block
(4 words)

Free block
(2 words) Free word

Allocated word

Carnegie Mellon

8

Allocation Example
(Conceptual)

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

p4 = malloc(2*SIZ)

#define SIZ sizeof(size_t)

Carnegie Mellon

9

Constraints
 Applications

▪ Can issue arbitrary sequence of malloc and free requests

▪ free request must be to a malloc’d block

 Requirements

▪ malloc requests should be served as first-come, first-served

▪ i.e., allocator may reorder, but it should not have side-effects

▪ Must align blocks so they satisfy all alignment requirements

▪ e.g., 16-byte (x86-64) alignment on 64-bit systems

▪ Must allocate blocks from free memory

▪ Can manipulate and modify only the free memory

▪ Q. What would happen if the allocator modifies the allocated memory?

▪ Can’t move the allocated blocks once they are malloc’d

▪ Q. What would happen if the allocator moves the blocks around?

Carnegie Mellon

10

Performance Goal

 Goals: maximize throughput and peak memory utilization
▪ These goals are often conflicting

 Throughput
▪ Number of completed requests per unit time

▪ Example:

▪ 5,000 malloc calls and 5,000 free calls in 10 seconds

▪ Throughput is 1,000 operations/second

Carnegie Mellon

11

Performance Goal: Memory Overhead

 Given some sequence of malloc and free requests:
▪ 𝑅1, … , 𝑅𝑘 , … , 𝑅𝑛−1

 After 𝒌 requests we have:

 Def: Aggregate payload 𝑷𝒌
▪ malloc(p) results in a block with a payload of p bytes

▪ The aggregate payload 𝑃𝑘 is the sum of currently allocated blocks

▪ The peak aggregate payloadmax
𝑖≤𝑘

𝑃𝑖 is the maximum aggregate blocks

at any point in the sequence up to request

 Def: Current heap size 𝑯𝒌
▪ Assume heap only grows when allocator uses sbrk, never shrinks

 Def: Memory Overhead, 𝑶𝒌
▪ Peak memory utilization after 𝒌 requests
▪ 𝑂𝑘 = (Τmax

𝑖≤𝑘
𝑃𝑖 𝐻𝑘)

Carnegie Mellon

12

Fragmentation

 Poor memory utilization caused by fragmentation
▪ Internal fragmentation

▪ External fragmentation

Carnegie Mellon

13

Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is
smaller than block size

 Caused by

▪ Overhead of maintaining heap data structures

▪ Padding payload for alignment purposes

Payload
Internal
fragmentation

Block

Internal
fragmentation

Carnegie Mellon

14

External Fragmentation

 Occurs when there is enough aggregate heap memory,
but no free blocks are large enough

p4 = malloc(7*SIZ) Yikes! (what would happen now?)

#define SIZ sizeof(size_t)

p1 = malloc(4*SIZ)

p2 = malloc(5*SIZ)

p3 = malloc(6*SIZ)

free(p2)

Carnegie Mellon

15

Implementation Issues

 How do we free a memory given just a pointer? You don’t
know the size of it.

 How do we keep track of all free (or available) blocks?

 How do we pick a block to return for allocation -- many
might fit?

 How do we reuse a block that has been freed?

Carnegie Mellon

16

Knowing How Much to Free
 Standard method

▪ Keep the length (in bytes) of a block in the word preceding the
block.

▪ This word is often called the header field or header

▪ Requires an extra word for every allocated block

p0 = malloc(4*SIZ)

p0

free(p0)

block size Payload
(aligned)

48

Padding
(for alignment)

Carnegie Mellon

17

Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list
▪ Different free lists for different size classes

 Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g., Red-Black tree) with pointers within

each free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

18

Today

 Basic concepts

 Implicit free lists

Carnegie Mellon

19

Method 1: Implicit Free List
 For each block we need both size and allocation status

▪ Could store this information in two words: wasteful!

 Standard trick

▪ When blocks are aligned, some low-order address bits are always 0

▪ Instead of storing an always-0 bit, use it as an allocated/free flag

▪ When reading the Size word, must mask out this bit

▪ Q. The fragmentation here is internal or external? What’s the fragmentation
ratio?

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: total block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Carnegie Mellon

20

Detailed Implicit Free List Example

Start
of

heap

Double-word
aligned

16/0 32/1 32/164/0

End
Block

8/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with “size in words/allocated bit”

Note: Headers are at non-aligned positions
➔ Payloads are aligned

Unused

heap_start heap_end

Carnegie Mellon

21

Q. Why should you align the memory?

 #A1. Hardware requirements
▪ Direct memory access (DMA)

 #A2. SIMD instructions only take the aligned memory

https://www.intel.com/content/www/us/en/docs/programmable/683521/21-4/allocating-aligned-memory.html

https://community.intel.com/t5/Intel-ISA-Extensions/SSE-and-AVX-behavior-with-aligned-unaligned-instructions/td-p/1170000

Carnegie Mellon

22

Implicit List: Data Structures

 Block declaration

 Getting payload from block pointer

 Getting header from payload

typedef uint64_t word_t;

typedef struct block

{

word_t header;

unsigned char payload[0];

} block_t;

header payload

return (void *) (block->payload);

return (block_t *) ((unsigned char *) p

- offsetof(block_t, payload));

// Zero length array

// p points to a payload

// block_t *block

C function offsetof(a,b) returns offset of member (i.e., b) within struct (i.e., a):

#define offsetof(a,b) ((int)(&(((a*)(0))->b)))

Carnegie Mellon

23

Implicit List: Header access

 Getting allocated bit from header

 Getting size from header

 Initializing header

return header & 0x1;

Size a

return (header >> 1) << 1;

block->header = size | alloc;

// block_t *block

Carnegie Mellon

24

Implicit List: Traversing list

 Find next block

static block_t *find_next(block_t *block)

{

return (block_t *) ((unsigned char *) block

+ get_size(block));

}

header payload header payloadunused

block size

16/0 32/1 32/164/0

End
Block

8/1

Unused

Carnegie Mellon

25

Implicit List: Finding a Free Block
 First fit:

▪ Search list from beginning, choose first free block that fits:

▪ Finding space for asize bytes (including header):

static block_t *find_fit(size_t asize)

{

block_t *block;

for (block = heap_start; block != heap_end;

block = find_next(block)) {

{

if (!(get_alloc(block)) // check if free

&& (asize <= get_size(block))) // check the size

return block;

}

return NULL; // No fit found

}

16/0 32/1 32/164/0 8/1

heap_start heap_end

Carnegie Mellon

26

Implicit List: Finding a Free Block
 First fit:

▪ Search list from beginning, choose first free block that fits:

▪ Can take linear time in total number of blocks (allocated and free)

 Next fit:

▪ Similar to first fit, but search list starting where previous search finished

▪ Should often be faster than first fit, assuming no/few frees were performed before

▪ Avoids re-scanning unhelpful blocks

 Best fit:

▪ Search the list, choose the best free block: fits, with fewest bytes left over

▪ Keeps (____) fragments small—usually improves memory utilization

▪ Will typically run slower than first fit

▪ Still a (____) algorithm. No guarantee of optimality

▪ We never know the next alloc/free request

Carnegie Mellon

27

Implicit List: Allocating in Free Block

 Allocating in a free block: splitting
▪ Since allocated space might be smaller than free space, we might want

to split the block

32 32 1648

32 1632

p

1632

split_block(p, 32)

8

8

Carnegie Mellon

28

Implicit List: Splitting Free Block

64

p

split_block(p, 32)

// Warning: This code is incomplete

static void split_block(block_t *block, size_t asize){

size_t block_size = get_size(block);

if ((block_size - asize) >= min_block_size) {

write_header(block, asize, true);

block_t *block_next = find_next(block);

write_header(block_next, block_size - asize, false);

}

1632 3216

Carnegie Mellon

29

Implicit List: Freeing a Block

 Simplest implementation:
▪ Need only clear the “allocated” flag

▪ But can lead to “false (____) fragmentation”

32 16 163232

free(p) p

32 32 1632 16

malloc(5*SIZ) Yikes!
There is enough contiguous

free space (5*SIZ), but the allocator

won’t be able to find it

8

8

Carnegie Mellon

30

Implicit List: Coalescing

 Join (coalesce) with next/previous blocks, if they are free
▪ Coalescing with next block

32 1632 16

free(p) p

32 32 16

32

48 16

logically
gone

8

8

Carnegie Mellon

31

Summary of Key Allocator Policies
 Placement policy:

▪ First-fit, next-fit, best-fit, etc.

▪ Trades off: throughput Vs. fragmentation

▪ Interesting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list

 Splitting policy:
▪ When do we go ahead and split free blocks?

▪ How much fragmentation are we willing to tolerate?

 Coalescing policy:
▪ Immediate coalescing: coalesce each time free is called

▪ Deferred coalescing: try to improve performance of free by deferring
coalescing until needed.

Carnegie Mellon

32

Implicit Lists: Summary
 Implementation: very simple

 Allocate cost:
▪ linear time worst case

 Free cost:
▪ constant time worst case

▪ even with coalescing

 Memory Overhead
▪ will depend on placement policy

▪ First-fit, next-fit or best-fit

 Not used for modern allocators because of linear-time
allocation
▪ used in many special purpose applications (e.g., embedded systems)

 However, the concepts of splitting and coalescing are general
to all allocators

