Systems Programming

Code Optimization and Linking

Byoungyoung Lee

Textbook coverage:
Ch 5: Optimizing Program Performance
Ch 7. Linking

Seoul National University

byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Today

m Basics of compiler optimization
" Principles and goals
= Some example optimizations

Obstacles to optimization

What does it mean to compile code?

m The CPU only understands
machine code directly

Source Code (.c, .cpp, .h) file

m All other languages must be
either

Pre-Processor

—
L
-

" jnterpreted: executed
by software

Include Header, Expan

Macro (., .ii)
= compiled: translated

to machine code .

by SOftwa re Assembler Assembly Code (.s)

Machine Code (.o, .obj)

Executable Machine
Code (.exe)

Compiler

Goals of compiler optimization

m Minimize number of instructions
= Don’t do calculations more than once
" Don’t do unnecessary calculations at all
= Avoid slow instructions (multiplication, division)

m Avoid waiting for memory
= Keep everything in registers whenever possible
= Access memory in cache-friendly patterns
" Load data from memory early, and only once

m Avoid branching
" Don’t make unnecessary decisions/branches at all

" Make it easier for the CPU to predict branch destinations
= “Unroll” loops to spread cost of branches over more instructions

Limits to compiler optimization

m Generally cannot improve algorithmic complexity
= Only constant factors, but those can be worth 10x or more for some cases

m Must not cause any change in program behavior

" Programmer expect the program runs as they developed/tested
" Note: language may declare some changes acceptable
= e.g., “Undefined behavior” (signed integer overflow)

m Usually only analyze one function at a time

= Whole-program analysis (inter-procedure analysis) is usually too
expensive or infeasible

m Should (or should not) assume run-time inputs

= “Worst case” performance can be just as important as “normal case”

= Especially for code exposed to attacker-controlled input
(e.g. network servers, cryptocurrency networks)

Compilation is a pipeline

Preprocessing

Assembling

Eliminate
Fold constants |—>| Inline functions |— common
subexpressions
|
v
Restructure Move code out Reduce control
loops % of loops | flow to gotos
|
v/
_ Reduce
Eliminate dead . Select
—> operation —>| . .
code strength instructions
|
\%
Schedule | Allocate .| Emitassembly
instructions registers language

Two kinds of optimizations

m Local optimizations
= Work inside a single basic block
= Constant folding, strength reduction, (local) CSE, ...

m Global optimizations
= Process the entire control flow graph of a function

" Loop nest optimization, code motion, (global) CSE, dead code
elimination, ...

Constant Folding

m Do arithmetic in the compiler
long mask = OxFF << 8;

=» long mask = OxFF00;

m Any expression with constant inputs can be folded

m Might even be able to remove library calls...

size t namelen
=» size t namelen

strlen("Harry Bovik");
11;

Strength reduction

m Replace expensive operations with cheaper ones

long a = b * 5;
= long a = (b << 2) + b;

m Multiplication and division are the usual targets

{. i@l Not all CPU operations are created equal
1,;%;01,, Operation Cost in CPU Cycles 10° 10° 102 10° 104 108 10°

“Simple” register-register op (ADD,OR,etc.)
Memory write (-1 |
Bypass delay: switch between
integer and floating-point units o
“Right” branch of “if” (1-2 |
Floating-point/vector addition (13|
Multiplication (integer/float/vector)
Return error and check
L1 read
TLB miss
L2 read
“Wrong” branch of “if” (branch misprediction)
Floating-point division
128-bit vector division 10-70
Atomics/CAS

3
I B

http://ithare.com/wp-content/uploads/part101_infographics_v08.png

Dead code elimination

m Don’t emit code that will never be executed

ny 2 my o,
J

i+F(H—{ puts("Only bozos on this bus"); +

m Don’t emit code whose result is overwritten

X——05
X = 23;

m These may look silly, but...
= Can be produced by other optimizations
= Assignments to X might be far apart
" |nvolve complex control-flows/data-flows

10

Common Subexpression Elimination (CSE)

m Factor out common expression, only evaluate them once

norm[i] = v[i].x * v[i].x + v[i].y * v[i].y;

g

elem = &v[i];
X = elem->X;
y = elem->y;
norm[i] = x*x + y*y;

11

Inlining

m Copy body of a function into its caller(s)
= Can create opportunities for many other optimizations

= Can make code much bigger and therefore slower

int pred(int x) {
if (x == 9)
return 0;
else
return x - 1;

}

int func(int y) {
return pred(y)
+ pred(0)

+ pred(y+1);

int func(int y) {
int tmp;
if (y == 0) tmp = 0; else tmp =y - 1;
if (0 == 0) tmp += 0; else tmp += 0 - 1;
if (y+1 == 0) tmp += 0; else tmp += (y + 1) - 1;

return tmp;

12

Inlining

m Copy body of a function into its caller(s)

= Can create opportunities for many other optimizations

= Can make code much bigger and therefore slower

int pred(int x) {
if (x == 0)
return 0;
else
return x - 1;

}

int func(int y) {
return pred(y)
+ pred(0)

+ pred(y+1);

int func(int y) {
int tmp;

if (y == @) tmp = 9; else tmp =y - 1;
if (0 == @) tmp += @; else tmp += 0 - 1;
if/(y+1 == @) tmp += 0; else tmp += (y + 1) - 1;

return tmp;

Always true

Does nothing Can constant fold

13

Inlining

m Copy body of a function into its caller(s)
= Can create opportunities for many other optimizations

= Can make code much bigger and therefore slower

int func(int y) {
int tmp;
if (y == 0) tmp = 9; else tmp =y - 1;
if (y+1 == @) tmp += 0@; else tmp += (y + 1) - 1;

return tmp;

int func(int y) {
int tmp = 9;
if (y '=0) tmp =y - 1;

if (y !'= -1) tmp += y;
return tmp;

}

14

Code Motion

m Move calculations out of a loop
m Only valid if every iteration would produce same result

= So called “loop invariant”

long j;
for (j = 0; j < n; Jj++)
a[n*i+j] = b[J];

long Jj;

int n_i = n*i;

for (j = 0; j < n; Jj++)
a[n_i+j] = b[]];

Loop Unrolling

m Amortize cost of loop condition by duplicating body

m Creates opportunities for CSE, code motion, etc.

m Can hurt performance by increasing code size

for (size_t i = @; i < nelts; i++) {
A[i] = B[i]*k + C[i];
}

for (size t i = @; i < nelts

A[i] =B[i]*k + C[i 1];
A[i+1] = B[i+1]*k + C[i+1];
A[i+2] = B[i+2]*k + C[i+2];
A[i+3] = B[i+3]*k + C[i+3];

-4; 1 +=4) {

16

When the compiler can’t move something

Q. What'’s the asymptotic complexity of lower1() and lower2()?
Q. Can the compiler optimize the code from lowerl() to lower2()?

void lowerl(char *s)
{
size t 1i;
for (i = @; 1 < strlen(s); i++)
if (s[i] »>= 'A' && s[i] <= 'Z")

void lower2(char *s)
{
size t i, n = strlen(s);
for (1 = 0; 1 < n; i++)
if (s[i] >= 'A' && s[i] <= 'Z")

S[i] - (lAl - lal); s[i] - (IAI - lal);
} }

250
3 200
c
8 150 ITowerl
» 100
2
@) 50 lower?2

0
0 100000 200000 300000 400000 500000

String length

17

Question: Undefined Behavior

1 long long_cmp_opt(const int a, const int b)
2

3 if(a>0){ // ais positive

4 do_something():

5 if(b<0){ // b is negative
6 do_something_else();

7 if ((a-b)>0) // always true or can it be false?
8 do_another_thing();

o }

10 }

11 }

Q1. Is the condition check at line 7 always true?
Q2. Should compiler remove the condition check at line 7?

A. Signed overflow optimization hazards in the kernel (https://lwn.net/Articles/511259/)

18

https://lwn.net/Articles/511259/

m Linking: combining object files into programs
= Symbols and symbol resolution
= Relocation

JOHN R. LEVINE

= Static libraries

Linkers

Linkers and Loaders, The Morgan Kaufmann Series in Software
Engineering and Programming, 1st Edition, John R. Levine

19

Example C Program

m Two source files
int sum(int *a, int n); int sum(int *a, int n)
{
int array([2] = {1, 2}; int 1, s = 0;
int main(int argc, char** argv) for (1 = 0; i < n; i++) {
{ s += a[i];
int val = sum(array, 2); }
return val; return s;
} }
main.c sum. c

20

Linking

m Programs are translated and li

" S gcc -Og -0 prog main.c sum.cC

= S ./prog

nked using a compiler driver:

main.c

l

sSum.c Source files

l

Translators

Translators

(cpp, ccl, as) (cpp, ccl, as)
mag.n o su!n. o Separately compiled
l l relocatable object files
Linker (ld)
prog Fully linked executable object file

21

Why should you know “Linking”

m To maintain a build system for a large-scale project
= Android? Python? TensorFlow?

" |n order to write a complex “Makefile/CMake”, you will need to
understand the things behind the scene

m To clearly understand the important systems concepts
= Shared libraries
" Loading
" Memory mapping
= Virtual memory
" The lifetime of “process”

What Do Linkers Do?

m Step #1: Constructing symbol tables (assembler)
m Step #2: Symbol resolution (linker)
m Step #3: Relocation (linker)

23

Step #1: Constructing symbol tables

m Step #1: Constructing symbol tables
= Symbol
= Definition and references of global variables and functions
- void swap() {..} /* define symbol swap */
- swap() ; /* reference symbol swap */

- int *xp = &x; /* define symbol xp, reference x */

= Symbol table
= Symbol table stores symbol definitions, which are an array of entries
= Each entry includes symbol name, size, and location of symbol.

= Symbol resolution: the linker associates each symbol reference with the
symbol definition

24

Symbols in Example C Program

Definitions

int sum(int *a, _i

7 T~

ini:EE§Z)nt *a, int n)

{

int int i, s = 0;
int nt argc, char** argv) for (i = 0; 1 < n; i++) {
{ s += a[1i];
int val = , 2) }
return val; return s;
} }
ayn.c sum. c
N\

Reference

25

Linker Symbols

m Every object file m has a table of symbols it defines or needs.

m Three types of symbols
" Global definitions

= Symbols defined by m that can be referenced by other files.
= In C, non-static functions and global variables.

" Local definitions

= Symbols that are defined by m but cannot be referenced by other
files.

= |n C, functions and global/local variables defined with static.
= Note: this is different from local variables (in stack)

" External references

= Symbols that m references but does not define.
= These must be defined by some other module.

26

Step #2: Symbol Resolution

???

int

sum(int *a, int n);

int

int

airay[Z] = {1, 2};
v

main (int argc, char** argv)

o)

int val = sum(array, 2);
return val; |

main.c

int sum(int *a, int n)

{

int i, s = 0;

for (i = 0; i < n;
s += al[1i];
}

return s;

i++) {

sum.cC

27

Relocation Entries in a object file

int array[2] = {1, 2},

Each relocation entry instructs how each
int main(int argc, char** reference should be relocated using the
argv) symbol table.

{
int val = sum(array, 2);
return val;)

} main.c

S objdump -r -d main.o

0000000000000000 <main>:

0: 48 83 ec 08 sub $0x8,%rsp

4: be 02 00 00 00 mov $0x2, %esi
9: bf 00 00 00 00 mov $0x0, %edi #
a: R X86 64 32 array #
e: e8 00 00 00 OO callg 13 <main+0x13> #
f: R X86 64 PC32 sum-0x4 #

13: 48 83 c4 08 add $0x8,%rsp

17: c3 retq

%edi = &array
Relocation entry

sum ()
Relocation entry

28

Step #3. Relocation

m Step #3. Relocation
= Takes place when linking

= e.g., merging multiple object files (with multiple code/data
sections) into a single executable file (with single code/data
section)

= Relocate symbols:
= from their relative locations in the . o files

= to their final absolute memory locations in the executable

29

Step #3: Relocation

Relocatable Object Files

System code

System data

main.o

main ()

int array[2]={1,2}

sum. o

sum ()

.text
.data

.text
.data

.text

\ |/

Executable Object File

Headers

System code

main ()

sum ()

More system code

System data

int array[2]={1,2}

.symtab
.debug

.text

.data

30

Relocated .text section (executable)

$ objdump -d prog

00000000004004d0 <main>:

4004d0: 48 83 ec
40044d4: be 02 00
4004d9: bf 18 10
4004de: e8
4004e3: 48 83 c4
4004e7: c3

00000000004004e8 <sum>:

4004e8: b8 00 00
4004ed: ba 00 00
4004£2: eb 09
4004£f4.: 48 63 ca
4004£f7: 03 04 8f
4004fa: 83 c2 01
4004 £d: 39 f2
4004ff: 7c £3
400501: £f3 c3

08
00
60

08

00
00

00
00

00
00

sub
mov
mov
callq
add
retq

$0x8,%rsp
$0x2, %esi
$0x601018, %edi
4004e8 <sum>
S0x8,%rsp

%edi =
sum()

&array

mov $0x0, $eax

mov $0x0, $edx

jmp 4004fd <sum+0x15>
movslg %edx, 3rcx

add %$rdi,%rcx,4) ,%eax
add $0x1, $edx

cmp %esi, Sedx

jl 4004£f4 <sum+0Oxc>

repz retq

callqginstruction uses PC-relative addressing for sum():

0x4004e8 =0x4004e3 +

31

Libraries: Packaging a Set of Functions

m How to package functions commonly used by programmers?
= Math, I/0, memory management, string manipulation, etc.

m Awkward, given the linker framework so far:
= Option 1: Put all functions into a single object file (e.g., a single lib file)
= Programmers link big object file into their programs
= Space and time inefficient
= Option 2: Put each function in a separate object file (e.g., multiple lib files)
= Programmers explicitly link appropriate binaries into their programs
= More efficient, but burdensome on the programmer

32

Static Libraries

m Static libraries (.a archive files)

= Concatenate related relocatable object files into a single file with an
index (called an archive).

= Linker resolves unresolved external references by looking for the
symbols in one or more archives.

= |f an archive member file resolves reference, link it into the executable.

33

Creating Static Libraries

atoi.c printf.c
Translator Translator
atoi.o printf.o

\ l

random.c

l

Translator

|

random.o

/

Archiver (ar)

S ar rs libc.a \

m Archiver allows incremental updates
m Recompile function that changes and replace .o file in archive.

l

libc.a

atoi.o printf.o ..

random.o

C standard library

34

Commonly Used Libraries

libc. a (the C standard library)

= 4.6 MB archive of 1496 object files.
= /0O, memory allocation, signal handling, string handling, data and time,

random numbers, integer math

libm. a (the C math library)
= 2 MB archive of 444 object files.

= floating point math (sin, cos, tan, log, exp, sqrt, ...)

$ ar -t /usr/lib/libc.a | sort

fork.o

fprintf.o

fpu control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o

S ar -t /usr/lib/libm.a

e acos.o

e acosf.o

e acosh.o

e acoshf.o
e _acoshl.o
e acosl.o
e asin.o

e asinf.o
e asinl.o

sort

35

Linking with
Static Libraries

#include <stdio.h>
#include "vector.h"

int x[2] = {1, 2};
int y[2] {3, 4};
int z[2];

int main(int argc, char*¥

argv)
{
addvec(x, y, z, 2);
printf("z = [%d %d]\n”,
z[0], z[1]):

return 0; main2.c

libvector.a

void addvec (int *x, int *y,
int *z, int n) {
int 1i;
for (1 = 0; i < n; i++)
z[i] = x[i] + yI[i];
} addvec.c
void multvec (int *x, int *y,
int *z, int n)
{
int i;
for (i = 0; i < n; i++)

z[1] = x[1] * y[i];

multvec.c

36

Linking with Static Libraries

-— - -— 2
addvec.o multvec.o $ gcc —static -o prog2c \

l l main2.o0 -L. -lvector
main2.c vector.h Archiver
1 l (ar)
Translators |
(cpp, ccl, as) libvector.a libc.a Static libraries
Rzloca;a;bmainz o prJC'.’nItf . 0o and any other
object files \ modules
Linker (1d)
roq2c Fully linked
prog executable object file
(861,232 bytes)

“c” for “compile-time”

37

Shared Libraries

m Limitations of Static libraries
= Duplication in the linked executables (every program needs libc)
= Duplication in the running executables
= This may not be a problem: de-duplication?
= Minor bug fixes of system libraries require each application to explicitly relink
= Stack overflow in glibc’s getaddrinfo() (CVE-2015-7547)
— If linking glibc statically, an executable has to be rebuilt

— https://security.googleblog.com/2016/02/cve-2015-7547-glibc-
getaddrinfo-stack.html

m Shared libraries (or dynamic library, or dynamic linking)

= QObject files that contain code and data that are loaded and linked into an
application dynamically, at either load-time or run-time

= Also called: DLLs, .so files

38

https://security.googleblog.com/2016/02/cve-2015-7547-glibc-getaddrinfo-stack.html

Shared Libraries (cont.)

m Load-time linking: Dynamic linking can occur when
executable is first loaded and run

= Common case for Linux, handled automatically by the dynamic linker
(ld-linux.so)

= Standard Clibrary (1ibec. so) is usually dynamically linked

m Run-time linking: Dynamic linking can also occur after
program has begun
= |n Linux, this is done by calls to the dlopen () interface
" Lazy loading with lazy binding

39

What dynamic libraries are required?

m Use “1dd” to find out:

$ 1ldd prog
linux-vdso.so.l => (0x00007££c£2998000)
libc.so.6 => /1ib/x86 64-linux-gnu/libc.so.6 (0x00007£99ad927000)
/1ib64/1d-1linux-x86-64.s0.2 (0x00007£99adcef000)

40

