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Today

 The memory abstraction
 Locality of reference
 The memory hierarchy
 Storage technologies and trends
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Recall: Writing & Reading Memory

 Write / Store
▪ Transfer data from memory to CPU
movq %rax, 8(%rsp)

 Read / Load
▪ Transfer data from CPU to memory
movq 8(%rsp), %rax
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Traditional Bus Structure Connecting 
CPU and Memory

 A bus is a collection of parallel wires that carry followings 

▪ Address

▪ Data

▪ Control signals

 Buses are typically shared by multiple devices.

Main
memory

I/O 
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus
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Memory Read Transaction (1)

 CPU places address ADDR on the memory bus.

ALU

Register file

Bus interface

ADDR
0

ADDRx

Main memory
I/O bridge

%rax

Load operation: movq (ADDR), %rax



Carnegie Mellon

6

Memory Read Transaction (2)

 Main memory reads address ADDR from the memory bus, 
retrieves word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

ADDRx

Main 
memory

%rax

I/O bridge

Load operation: movq (ADDR), %rax
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Memory Read Transaction (3)

 CPU read word x from the bus and copies it into register 
%rax.

ALU

Register file

Bus interface x

Main memory
0

ADDR

%rax

I/O bridge

Load operation: movq (ADDR), %rax

x
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Memory Write Transaction (1)

 CPU places address ADDR on bus. Main memory reads it 
and waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface

ADDR

Main memory
0

ADDR

%rax

I/O bridge

Store operation: movq %rax, (ADDR)
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Memory Write Transaction (2)

 CPU places data word y on the bus.

y
ALU

Register file

Bus interface

y

Main memory
0

ADDR

%rax

I/O bridge

Store operation: movq %rax, (ADDR)
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Memory Write Transaction (3)

 Main memory reads data word y from the bus and stores 
it at address ADDR.

y
ALU

Register file

Bus interface y

Main memory
0

ADDR

%rax

I/O bridge

Store operation: movq %rax, (ADDR)
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 The memory hierarchy
 Storage technologies and trends
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The CPU-Memory Gap
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Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental 
property of computer programs known as locality.



Carnegie Mellon

14

Locality

 Principle of Locality: Programs tend to use data and 
instructions with addresses near or equal to those they 
have used recently

 Temporal locality:  
▪ Recently referenced items are likely 

to be referenced again in the near future

 Spatial locality:  
▪ Items with nearby addresses tend 

to be referenced close together in time
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Locality Example

 Data references
▪ Reference array elements in succession.

▪ Reference variable sum each iteration.

 Instruction references
▪ Reference instructions in sequence.

▪ Cycle through loop repeatedly. 

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

Spatial or Temporal
Locality?

temporal

spatial

temporal

spatial
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Locality Example (1)

 Question: Does this function have good locality with 
respect to array a?

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

Answer: yes

Hint: array layout
is row-major order

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •
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Locality Example (2)

 Question: Does this function have good locality with 
respect to array a?

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

Answer: no, unless…

M is very small

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •
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Memory Hierarchies

 Fundamental properties of memory storage:
▪ The faster ➔ the more costs and the less capacity

▪ The slower ➔ the less costs and the more capacity

 These fundamental properties complement each other 
beautifully.

 They suggest an approach for organizing memory and 
storage systems known as a memory hierarchy.
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Example Memory 
Hierarchy Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., cloud storage)

Local disks hold files 
retrieved from disks 
on remote servers.

L2 cache 
(SRAM)

L1 cache holds cache lines retrieved 
from the L2 cache.

CPU registers hold words retrieved 
from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk blocks 
retrieved from local disks.
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Caches

 Cache: A smaller, faster storage device that acts as a staging 
area for a subset of the data in a larger, slower device.

 Fundamental idea of a memory hierarchy:
▪ For each k, the faster, smaller device at level k serves as a cache for the 

larger, slower device at level k+1.

 Why do memory hierarchies work?
▪ Because of locality, programs tend to access the data at level k more 

often than they access the data at level k+1. 
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General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4

10

10

10
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General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block 14 is neededRequest: 14

14
Block 14 is in cache:
Hit!
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General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block 12 is neededRequest: 12

Block 12 is not in cache:
Miss!

Block 12 is fetched from
memoryRequest: 12

12

12

12

Block 12 is stored in cache
• Placement policy:

determines where b goes
(e.g., associativity)
•Replacement policy:

determines which block
gets evicted (victim)
(e.g., FIFO/LRU)
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Examples of Caching in the Mem. Hierarchy

Hardware 
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer 
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 byte words

What is Cached?

Web proxy 
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware
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Summary

 The speed gap between CPU, memory and mass storage 
continues to widen.

 Well-written programs exhibit a property called locality.

 Memory hierarchies based on caching close the gap by 
exploiting locality.


