
Carnegie Mellon

1

Systems Programming

The Memory Hierarchy

Byoungyoung Lee

Seoul National University

byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

Textbook coverage:

Ch 6: The Memory Hierarchy

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Carnegie Mellon

2

Today

 The memory abstraction
 Locality of reference
 The memory hierarchy
 Storage technologies and trends

Carnegie Mellon

3

Recall: Writing & Reading Memory

 Write / Store
▪ Transfer data from memory to CPU
movq %rax, 8(%rsp)

 Read / Load
▪ Transfer data from CPU to memory
movq 8(%rsp), %rax

Carnegie Mellon

4

Traditional Bus Structure Connecting
CPU and Memory

 A bus is a collection of parallel wires that carry followings

▪ Address

▪ Data

▪ Control signals

 Buses are typically shared by multiple devices.

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Carnegie Mellon

5

Memory Read Transaction (1)

 CPU places address ADDR on the memory bus.

ALU

Register file

Bus interface

ADDR
0

ADDRx

Main memory
I/O bridge

%rax

Load operation: movq (ADDR), %rax

Carnegie Mellon

6

Memory Read Transaction (2)

 Main memory reads address ADDR from the memory bus,
retrieves word x, and places it on the bus.

ALU

Register file

Bus interface

x 0

ADDRx

Main
memory

%rax

I/O bridge

Load operation: movq (ADDR), %rax

Carnegie Mellon

7

Memory Read Transaction (3)

 CPU read word x from the bus and copies it into register
%rax.

ALU

Register file

Bus interface x

Main memory
0

ADDR

%rax

I/O bridge

Load operation: movq (ADDR), %rax

x

Carnegie Mellon

8

Memory Write Transaction (1)

 CPU places address ADDR on bus. Main memory reads it
and waits for the corresponding data word to arrive.

y
ALU

Register file

Bus interface

ADDR

Main memory
0

ADDR

%rax

I/O bridge

Store operation: movq %rax, (ADDR)

Carnegie Mellon

9

Memory Write Transaction (2)

 CPU places data word y on the bus.

y
ALU

Register file

Bus interface

y

Main memory
0

ADDR

%rax

I/O bridge

Store operation: movq %rax, (ADDR)

Carnegie Mellon

10

Memory Write Transaction (3)

 Main memory reads data word y from the bus and stores
it at address ADDR.

y
ALU

Register file

Bus interface y

Main memory
0

ADDR

%rax

I/O bridge

Store operation: movq %rax, (ADDR)

Carnegie Mellon

11

Today

 The memory Abstraction
 Locality of reference
 The memory hierarchy
 Storage technologies and trends

Carnegie Mellon

12

The CPU-Memory Gap

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

DRAM

CPU

SSD

Disk

SRAM

Carnegie Mellon

13

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental
property of computer programs known as locality.

Carnegie Mellon

14

Locality

 Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

 Temporal locality:
▪ Recently referenced items are likely

to be referenced again in the near future

 Spatial locality:
▪ Items with nearby addresses tend

to be referenced close together in time

Carnegie Mellon

15

Locality Example

 Data references
▪ Reference array elements in succession.

▪ Reference variable sum each iteration.

 Instruction references
▪ Reference instructions in sequence.

▪ Cycle through loop repeatedly.

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

Spatial or Temporal
Locality?

temporal

spatial

temporal

spatial

Carnegie Mellon

16

Locality Example (1)

 Question: Does this function have good locality with
respect to array a?

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

Answer: yes

Hint: array layout
is row-major order

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

Carnegie Mellon

17

Locality Example (2)

 Question: Does this function have good locality with
respect to array a?

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

Answer: no, unless…

M is very small

• • •

a

[0]

[0]

a

[0]

[N-1]

• • •

a

[1]

[0]

a

[1]

[N-1]

• • •

a

[M-1]

[0]

a

[M-1]

[N-1]

• • •

Carnegie Mellon

18

Today

 The memory abstraction
 Storage technologies and trends
 Locality of reference
 The memory hierarchy

Carnegie Mellon

19

Memory Hierarchies

 Fundamental properties of memory storage:
▪ The faster ➔ the more costs and the less capacity

▪ The slower ➔ the less costs and the more capacity

 These fundamental properties complement each other
beautifully.

 They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

Carnegie Mellon

20

Example Memory
Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., cloud storage)

Local disks hold files
retrieved from disks
on remote servers.

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved
from the L1 cache.

L2 cache holds cache lines
retrieved from L3 cache.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
retrieved from main memory.

L6:

Main memory holds disk blocks
retrieved from local disks.

Carnegie Mellon

21

Caches

 Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

 Fundamental idea of a memory hierarchy:
▪ For each k, the faster, smaller device at level k serves as a cache for the

larger, slower device at level k+1.

 Why do memory hierarchies work?
▪ Because of locality, programs tend to access the data at level k more

often than they access the data at level k+1.

Carnegie Mellon

22

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

Carnegie Mellon

23

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block 14 is neededRequest: 14

14
Block 14 is in cache:
Hit!

Carnegie Mellon

24

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block 12 is neededRequest: 12

Block 12 is not in cache:
Miss!

Block 12 is fetched from
memoryRequest: 12

12

12

12

Block 12 is stored in cache
• Placement policy:

determines where b goes
(e.g., associativity)
•Replacement policy:

determines which block
gets evicted (victim)
(e.g., FIFO/LRU)

Carnegie Mellon

25

Examples of Caching in the Mem. Hierarchy

Hardware
MMU

0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB pages

64-byte blocks

64-byte blocks

4-8 byte words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware4On-Chip L1

Hardware10On-Chip L2

NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

Carnegie Mellon

26

Summary

 The speed gap between CPU, memory and mass storage
continues to widen.

 Well-written programs exhibit a property called locality.

 Memory hierarchies based on caching close the gap by
exploiting locality.

