Systems Programming

The Memory Hierarchy

Byoungyoung Lee

Textbook coverage:
Ch 6: The Memory Hierarchy

Seoul National University

byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Today

m The memory abstraction
|
|
|

Recall: Writing & Reading Memory

m Write / Store

" Transfer data from memory to CPU
movqg %rax, 8 (%rsp)

m Read / Load

" Transfer data from CPU to memory
movq 8 (%rsp), S%Srax

Traditional Bus Structure Connecting
CPU and Memory

m A busis a collection of parallel wires that carry followings

= Address
= Data
= Control signals

m Buses are typically shared by multiple devices.

CPU chip

Register file

I L

—
y ALU
\,_

Bus interface

System bus

Memory bus

P

P
%

1/0
bridge

|

<

>

Main
memory

Memory Read Transaction (1)

m CPU places address ADDR on the memory bus.

Register file

$rax <::| ALU

Main memory
j E 1/0 bridge ADDR 0

Load operation: movg (ADDR) , %$rax

Bus interface

X ADDR

Memory Read Transaction (2)

m Main memory reads address ADDR from the memory bus,
retrieves word x, and places it on the bus.

Register file : Load operation: movg (ADDR) , $%rax

. ALU
srax
:Zl Main
iI memory
1/0 bridge X 0

Memory Read Transaction (3)

m CPU read word x from the bus and copies it into register
srax.

Register file

: ALU

$rax I% /1 |
Main memory
1/O bridge 0

Load operation: movg (ADDR) , %rax

Bus interface

X ADDR

Memory Write Transaction (1)

m CPU places address ADDR on bus. Main memory reads it
and waits for the corresponding data word to arrive.

Register file

$rax

1r

—

—

ALU

Bus interface

Store operation: movqg %$rax, (ADDR)

1/0 bridge

ADDR

Main memory
0

ADDR

Memory Write Transaction (2)

m CPU places data word y on the bus.

Register file

. : ALU
srax v <1':|

Store operation: movqg %$rax, (ADDR)

Main memory
0

1/0 bridge

Bus interface

ADDR

Memory Write Transaction (3)

m Main memory reads data word y from the bus and stores
it at address ADDR.

Register file

ALU

1r

Bus interface

Store operation: movg %rax, (ADDR)

1/0 bridge

Main memory

=

0

ADDR

10

Today

Locality of reference

11

The CPU-Memory Gap

Time (ns)

100,000,000.0
10,000,000.0
1,000,000.0
100,000.0
10,000.0
1,000.0

100.0

10.0

1.0

0.1

0.0

w)
7
| X

SSD

*

—e—Disk seek time

—— SSD access time

—-DRAM access time

\

nD A —o—SRAM access time
-+ CPU cycle time

—O—Effective CPU cycle time

SRAM

\Q CPU

1985

1990

1995 2000 2003 2005 2010 2015
Year

12

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental
property of computer programs known as locality.

13

Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they

have used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

C /

m Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time

14

Locality Example

sum = 0;

for (i = 0; i < n; i++)
sum += a[i];

return sum;

Spatial or Temporal

m Data references Locality?
= Reference array elements in succession. spatial
= Reference variable sum each iteration. temporal

m Instruction references
= Reference instructions in sequence. spatial
® Cycle through loop repeatedly. temporal

Locality Example (1)

m Question: Does this function have good locality with

respect to array a?

Hint: array layout
is row-major order

Answer: yes

int sum array rows(int a[M] [N])

{

int i, j, sum = 0;

for (1 = 0; i < M; i++)
for (j = 0; j < N; Jj++)
sum += a[i] [J];
return sum;

[0] | « = - | [O]
[0] [N-1]

[1]
[0]

[1] « s [M-1]] « - - |[M-1]
[N-1] [0] [N-1]

16

Locality Example (2)

m Question: Does this function have good locality with
respect to array a?

int sum array cols(int a[M] [N])
{
int i, j, sum = 0;
for (j = 0; jJ < N; j++) . |
for (i = 0; i < M; i++) Answer: no, unless...
sum += a[i] [J];
return sum; M is very small
}
a a a a a a
[01 | « « « [[O1 | [1] |+ « = | [1] -+ o+ M-1]] - . . |[M-1]
[0] [N-1]f [O] [N-1] [0] [N-1]

Today

The memory hierarchy

18

Memory Hierarchies

m Fundamental properties of memory storage:
" The faster = the more costs and the less capacity
" The slower =» the less costs and the more capacity

m These fundamental properties complement each other
beautifully.

m They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

19

Example Memory

Hierarchy 10/ e
CPU registers hold words retrieved
Smaller, from the L1 cache.
faster, L1: L1 cache
and (SRAM) L1 cache holds cache lines retrieved
Costlier from the L2 cache.
(per byte) L2: L2 cache
(SRAM) _
storage L2 cache holds cache lines
devices retrieved from L3 cache.
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
(per byte) retrieved from local disks.
storage . Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers.
L6: Remote secondary storage

(e.g., cloud storage)

20

Caches

m Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.

m Fundamental idea of a memory hierarchy:

" For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.

m Why do memory hierarchies work?

= Because of locality, programs tend to access the data at level k more
often than they access the data at level k+1.

21

Cache

Memory

General Cache Concepts

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

diCPU|B
4 9 10 3
10 Data is copied in block-sized
transfer units
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

22

General Cache Concepts: Hit

Cache

Memory

ANNN

d|CPU|(E
Request: 14
8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in block 14 is needed

Block 14 is in cache:
Hit!

23

General Cache Concepts: Miss

Cache

Memory

anNnN

d|CPU|(E

Request: 12

8 12 14 3
12 Request: 12

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in block 12 is needed

Block 12 is not in cache:
Miss!

Block 12 is fetched from
memory

Block 12 is stored in cache

* Placement policy:
determines where b goes
(e.g., associativity)

* Replacement policy:
determines which block
gets evicted (victim)

(e.g., FIFO/LRU)

Examples of Caching in the Mem. Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 4-8 byte words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware
MMU

L1 cache 64-byte blocks On-Chip L1 4 | Hardware

L2 cache 64-byte blocks On-Chip L2 10 | Hardware

Virtual Memory 4-KB pages Main memory 100 | Hardware + OS

Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware

Network buffer Parts of files Local disk 10,000,000 | NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy

server

25

Summary

m The speed gap between CPU, memory and mass storage
continues to widen.

m Well-written programs exhibit a property called locality.

m Memory hierarchies based on caching close the gap by
exploiting locality.

26

