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Today

 Memory Layout

 Buffer Overflow
▪ Vulnerability

▪ Protection
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x86-64 Linux Memory Layout

 Stack
▪ Runtime stack

▪ e.g., local variables

 Heap
▪ Dynamically allocated as needed

▪ When call  malloc(), calloc(), new()

 Data
▪ Statically allocated data

▪ e.g., global vars, static vars, string constants

 Text  / Shared Libraries
▪ Executable machine instructions

▪ Read-only
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Memory Layout: Example

char big_array[1L<<24];  /* 16 MB */

char huge_array[1L<<31]; /*  2 GB */

int global = 0;

int useless() { return 0; }

int main ()

{

void *phuge1, *psmall2, *phuge3, *psmall4;

int local = 0;

phuge1 = malloc(1L << 28);  /* 256 MB */

psmall2 = malloc(1L << 8);  /* 256  B */

phuge3 = malloc(1L << 32);  /*   4 GB */

psmall4 = malloc(1L << 8);  /* 256  B */

}

Q. Where does everything go?
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Memory Layout: Example

rwxp:
- Read
- Write
- Execute
- Private
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Today

 Memory Layout

 Buffer Overflow
▪ Vulnerability

▪ Protection
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Stack buffer-overflow: Example
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Such Problems are a BIG Deal

 Generally called a “buffer overflow”
▪ When exceeding the memory size allocated for an array

 Why a big deal?
▪ It’s the major technical cause of security vulnerabilities

▪ #1 overall cause is social engineering / user ignorance

 Most common form
▪ Unchecked lengths on string inputs

▪ Particularly for bounded character arrays on the stack

Reference: 
http://www.aquamanager.com
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Exploits Based on Buffer Overflows

 Buffer overflow bugs can allow remote machines to execute arbitrary code on victim machines

 Surprisingly common in real programs

▪ Programmers keep making the same mistakes 

▪ Recent mitigation techniques make these attacks much more difficult

 Examples across the decades

▪ Original “Morris worm” (1988)

▪ Code Red worm (2001)

▪ Stuxnet (2005~2010)

▪ Heartbleed (2012~2014)

▪ … and many, many more

▪ Most of Chrome/Firefox/Safari exploits

▪ Most iOS Jailbreak, Android rooting

 You will learn some of the tricks in attacklab

▪ Hopefully to convince you to never leave such holes in your programs!!
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Example: the original Morris worm (1988)

 Exploited a few vulnerabilities to spread
▪ Early versions of the finger server (fingerd) used gets() to read the argument sent by the 

client:

▪ finger byoungyoung@snu.ac.kr

▪ Worm attacked fingerd server by sending phony argument:

▪ finger “exploit-code  padding  new-return-address”

▪ exploit code: executed a root shell on the victim machine with a direct TCP connection to 
the attacker.

 Once on a machine, scanned for other machines to attack
▪ invaded ~6000 computers in hours (10% of the Internet ☺ )

▪ see June 1989 article in Comm. of the ACM

▪ the young author of the worm was prosecuted, and then…

▪ https://en.wikipedia.org/wiki/Robert_Tappan_Morris

https://en.wikipedia.org/wiki/Robert_Tappan_Morris
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Stuxnet

Reference: https://www.extremetech.com
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Heartbleed

https://xkcd.com/1354/
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Let’s go back to the example
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When does it start complaining?

This is not quite smart….
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Being smarter with pwntools

It starts complaining if the length is 32 or more.
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Can you be more precise when it starts breaking?

- The assembly of copy_name() should have an answer!
- Let’s read assembly …
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Why does it break at 32?

copy_name()
main()

RET ADDR
rsp

stack

• call instruction pushes the return address
• The address of the call's next instruction

• rdi holds the first parameter of copy_name() (i.e., `char *src`)



Carnegie Mellon

18

Why does it break at 32?

copy_name()

RET ADDR
rsp

stack

(saved) rbp
rsp

• `push rbp` is part of the function prolog. 
• It saves the stack frame pointer (i.e., `rbp`) of the caller (which is `main()`)
• This saved stack frame pointer will be restored later when executing `leave`.
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Why does it break at 32?

copy_name()

RET ADDR

stack

(saved) rbp
rsp

• `mov rbp, rsp` is also part of the function prolog. 
• This updates the stack frame pointer

• such that `rbp` accordingly points to the stack  frame pointer of `copy_name()` 
• which previously pointed to the tack frame pointer of `main()`

rbp
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Why does it break at 32?

copy_name()

RET ADDR

stack

(saved) rbp
rbp

• This subtraction w.r.t. `rsp` is allocating the local space for copy_name()

rsp

0x30

rsp
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Why does it break at 32?

copy_name()

RET ADDR

stack

(saved) rbp
rbp

• Using `lea`, the base address of `char name[]` is stored in rax
• rax == `rbp-0x20`.

rsp

0x20

rax
char 

name[]
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Why does it break at 32?

copy_name()

RET ADDR

stack

(saved) rbp
rbp

Do you see now why the program starts complaining when the string size is  32?

rsp

0x20

rdi
char 

name[]
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Exploiting Stack Buffer Overflows

 Overwriting the return address, you can control “RIP”
▪ Means you can control “where to execute”

 But how would you execute your own malicious code?
▪ (1) Jump to the existing (malicious) code in the victim program

▪ (2) Inject the malicious code

▪ (3) return-oriented-programming
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Buffer Overflow Attacks

 Overwrite normal return address of copy_name() with the address of some other code!

 When copy_name returns, it will jump to the other code (i.e., print_passwd())

RET ADDR

(saved) rbp
rbp

rsp

0x20

rdi
char 

name[]
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Code Injection Attacks

 Input string contains byte representation of executable code

 Overwrite the return address copy_name() with the address of the name buffer

 When copy_name returns, it will jump to the exploit code

RET ADDR

(saved) rbp
rbp

rsp

0x20

rdi
char 

name[]

Return 
to here

Injected
Attack
code
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What to Do About Buffer Overflow Attacks

 Avoid overflow vulnerabilities

 Employ system-level protections

 Have compiler use “stack canaries”

 Lets talk about each…
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1. Avoid Overflow Vulnerabilities in Code (!)

 For example, use library routines that limit string lengths
▪ fgets instead of gets

▪ strncpy instead of strcpy

▪ Don’t use scanf with %s conversion specification

▪ Use fgets to read the string

▪ Secure coding practice!

/* Echo Line */

void echo()

{

char buf[4];  

fgets(buf, 4, stdin);

puts(buf);

}
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2. System-Level Protections Can Help

 Randomized stack offsets
▪ At start of program, allocate random amount of space on stack

▪ Shifts stack addresses for entire program

▪ Makes it difficult for hacker to predict beginning of inserted code

▪ e.g., 5 executions of memory allocation code

▪ Stack is repositioned each time program executes

▪ Address Space Layout Randomization (ASLR)

local 0x7ffe4d3be87c 0x7fff75a4f9fc 0x7ffeadb7c80c 0x7ffeaea2fdac 0x7ffcd452017c

0000 7FFF FFFF F000

Stack

Text

Data

Heap

Shared
Libraries

40 0000

randomized

randomized
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2. System-Level Protections Can Help

 Non-executable code segments
▪ In traditional x86, can mark region of memory as either “read-only” or “writeable”

▪ Can execute anything readable

▪ x86-64 added explicit “execute” permission

▪ Stack marked as non-executable

Stack after call to strcpy()

B

P stack frame

Q stack frame

B

exploit
code

paddata written
by strcpy()

Any attempt to execute this code will fail



Carnegie Mellon

30

3. Stack Canaries Can Help

 Idea
▪ Place special value (“canary”) on stack just beyond buffer

▪ Check for corruption before exiting function

 GCC Implementation
▪ -fstack-protector

▪ Now the default

RET ADDR

stack

(saved) rbp
rbp

rsp

rdi
char 

name[]

CANARY
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3. Stack Canaries Can Help

- %fs:0x28 is a read-only storage, storing a global canary. 
- The global canary is initialized with a random value when the program is loaded.

copy_name() : before

copy_name() : after
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Return-Oriented Programming Attacks

 Challenge (for hackers)
▪ Marking stack nonexecutable makes it hard to insert binary code

 Alternative Strategy
▪ Use existing code

▪ e.g., library code from stdlib (called “return-to-libc”)

▪ Chain those fragments to achieve overall desired outcome

 Construct “attack logic” from gadgets
▪ Gadget: any sequence of instructions ending in ret

▪ ret: an instruction encoded by single byte 0xc3



Return-oriented-programming (ROP)

Generalized, away more powerful version of return-to-libc

Gadget

A sequence of instructions embedded in avictim program 

Ends with areturninstruction

Each gadgetemulates aspecific primitive operation 
e.g.,add,mul,mov,jmp,etc.

ROP

Connect multiple gadgets together to perform arbitrary 

operations

33



ROP Example #1 (simple)

Goal:StoreaconstantvalueC to amemoryaddressA

How would you setup the registers and stack?

Given the CPU context

* denotes the register value that the attacker can control

Register Value

eip *

esp 0xbfff0000

eax *

ebx *

Given gadgets

G1:

mov (%eax), %ebx 

ret

34



Register Value

eip *

esp 0xbfff0000

eax 0

ebx 0

Given gadgets

G1

mov (%eax),

%ebx ret

|G2:

| mov

| ret

%eax, A

|G3:

| mov %ebx, C

| ret

Goal:StoreaconstantC to amemoryaddressA

How would you setup the registers and stack?

Given CPU context

ROP Example #2 (chain)

35
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Summary

 Memory Layout

 Buffer Overflow
▪ Vulnerability

▪ Protection

▪ Code Injection Attack

▪ Return Oriented Programming


