
Carnegie Mellon

1

Systems Programming

Stack Buffer Overflow

Byoungyoung Lee

Seoul National University

byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Carnegie Mellon

2

Today

 Memory Layout

 Buffer Overflow
▪ Vulnerability

▪ Protection

Carnegie Mellon

3

x86-64 Linux Memory Layout

 Stack
▪ Runtime stack

▪ e.g., local variables

 Heap
▪ Dynamically allocated as needed

▪ When call malloc(), calloc(), new()

 Data
▪ Statically allocated data

▪ e.g., global vars, static vars, string constants

 Text / Shared Libraries
▪ Executable machine instructions

▪ Read-only

0000

Stack

Text

Data

Heap

Shared
Libraries

0x00000000

0xc0000000

Virtual
Address

Carnegie Mellon

4

Memory Layout: Example

char big_array[1L<<24]; /* 16 MB */

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main ()

{

void *phuge1, *psmall2, *phuge3, *psmall4;

int local = 0;

phuge1 = malloc(1L << 28); /* 256 MB */

psmall2 = malloc(1L << 8); /* 256 B */

phuge3 = malloc(1L << 32); /* 4 GB */

psmall4 = malloc(1L << 8); /* 256 B */

}

Q. Where does everything go?

Stack

Text

Data

Heap

Shared
Libraries

0x00000000

0xc0000000

Virtual
Address

Carnegie Mellon

5

Memory Layout: Example

rwxp:
- Read
- Write
- Execute
- Private

Carnegie Mellon

6

Today

 Memory Layout

 Buffer Overflow
▪ Vulnerability

▪ Protection

Carnegie Mellon

7

Stack buffer-overflow: Example

Carnegie Mellon

8

Such Problems are a BIG Deal

 Generally called a “buffer overflow”
▪ When exceeding the memory size allocated for an array

 Why a big deal?
▪ It’s the major technical cause of security vulnerabilities

▪ #1 overall cause is social engineering / user ignorance

 Most common form
▪ Unchecked lengths on string inputs

▪ Particularly for bounded character arrays on the stack

Reference:
http://www.aquamanager.com

Carnegie Mellon

9

Exploits Based on Buffer Overflows

 Buffer overflow bugs can allow remote machines to execute arbitrary code on victim machines

 Surprisingly common in real programs

▪ Programmers keep making the same mistakes 

▪ Recent mitigation techniques make these attacks much more difficult

 Examples across the decades

▪ Original “Morris worm” (1988)

▪ Code Red worm (2001)

▪ Stuxnet (2005~2010)

▪ Heartbleed (2012~2014)

▪ … and many, many more

▪ Most of Chrome/Firefox/Safari exploits

▪ Most iOS Jailbreak, Android rooting

 You will learn some of the tricks in attacklab

▪ Hopefully to convince you to never leave such holes in your programs!!

Carnegie Mellon

10

Example: the original Morris worm (1988)

 Exploited a few vulnerabilities to spread
▪ Early versions of the finger server (fingerd) used gets() to read the argument sent by the

client:

▪ finger byoungyoung@snu.ac.kr

▪ Worm attacked fingerd server by sending phony argument:

▪ finger “exploit-code padding new-return-address”

▪ exploit code: executed a root shell on the victim machine with a direct TCP connection to
the attacker.

 Once on a machine, scanned for other machines to attack
▪ invaded ~6000 computers in hours (10% of the Internet ☺)

▪ see June 1989 article in Comm. of the ACM

▪ the young author of the worm was prosecuted, and then…

▪ https://en.wikipedia.org/wiki/Robert_Tappan_Morris

https://en.wikipedia.org/wiki/Robert_Tappan_Morris

Carnegie Mellon

11

Stuxnet

Reference: https://www.extremetech.com

Carnegie Mellon

12

Heartbleed

https://xkcd.com/1354/

Carnegie Mellon

13

Let’s go back to the example

Carnegie Mellon

14

When does it start complaining?

This is not quite smart….

Carnegie Mellon

15

Being smarter with pwntools

It starts complaining if the length is 32 or more.

Carnegie Mellon

16

Can you be more precise when it starts breaking?

- The assembly of copy_name() should have an answer!
- Let’s read assembly …

Carnegie Mellon

17

Why does it break at 32?

copy_name()
main()

RET ADDR
rsp

stack

• call instruction pushes the return address
• The address of the call's next instruction

• rdi holds the first parameter of copy_name() (i.e., `char *src`)

Carnegie Mellon

18

Why does it break at 32?

copy_name()

RET ADDR
rsp

stack

(saved) rbp
rsp

• `push rbp` is part of the function prolog.
• It saves the stack frame pointer (i.e., `rbp`) of the caller (which is `main()`)
• This saved stack frame pointer will be restored later when executing `leave`.

Carnegie Mellon

19

Why does it break at 32?

copy_name()

RET ADDR

stack

(saved) rbp
rsp

• `mov rbp, rsp` is also part of the function prolog.
• This updates the stack frame pointer

• such that `rbp` accordingly points to the stack frame pointer of `copy_name()`
• which previously pointed to the tack frame pointer of `main()`

rbp

Carnegie Mellon

20

Why does it break at 32?

copy_name()

RET ADDR

stack

(saved) rbp
rbp

• This subtraction w.r.t. `rsp` is allocating the local space for copy_name()

rsp

0x30

rsp

Carnegie Mellon

21

Why does it break at 32?

copy_name()

RET ADDR

stack

(saved) rbp
rbp

• Using `lea`, the base address of `char name[]` is stored in rax
• rax == `rbp-0x20`.

rsp

0x20

rax
char

name[]

Carnegie Mellon

22

Why does it break at 32?

copy_name()

RET ADDR

stack

(saved) rbp
rbp

Do you see now why the program starts complaining when the string size is 32?

rsp

0x20

rdi
char

name[]

Carnegie Mellon

23

Exploiting Stack Buffer Overflows

 Overwriting the return address, you can control “RIP”
▪ Means you can control “where to execute”

 But how would you execute your own malicious code?
▪ (1) Jump to the existing (malicious) code in the victim program

▪ (2) Inject the malicious code

▪ (3) return-oriented-programming

Carnegie Mellon

24

Buffer Overflow Attacks

 Overwrite normal return address of copy_name() with the address of some other code!

 When copy_name returns, it will jump to the other code (i.e., print_passwd())

RET ADDR

(saved) rbp
rbp

rsp

0x20

rdi
char

name[]

Carnegie Mellon

25

Code Injection Attacks

 Input string contains byte representation of executable code

 Overwrite the return address copy_name() with the address of the name buffer

 When copy_name returns, it will jump to the exploit code

RET ADDR

(saved) rbp
rbp

rsp

0x20

rdi
char

name[]

Return
to here

Injected
Attack
code

Carnegie Mellon

26

What to Do About Buffer Overflow Attacks

 Avoid overflow vulnerabilities

 Employ system-level protections

 Have compiler use “stack canaries”

 Lets talk about each…

Carnegie Mellon

27

1. Avoid Overflow Vulnerabilities in Code (!)

 For example, use library routines that limit string lengths
▪ fgets instead of gets

▪ strncpy instead of strcpy

▪ Don’t use scanf with %s conversion specification

▪ Use fgets to read the string

▪ Secure coding practice!

/* Echo Line */

void echo()

{

char buf[4];

fgets(buf, 4, stdin);

puts(buf);

}

Carnegie Mellon

28

2. System-Level Protections Can Help

 Randomized stack offsets
▪ At start of program, allocate random amount of space on stack

▪ Shifts stack addresses for entire program

▪ Makes it difficult for hacker to predict beginning of inserted code

▪ e.g., 5 executions of memory allocation code

▪ Stack is repositioned each time program executes

▪ Address Space Layout Randomization (ASLR)

local 0x7ffe4d3be87c 0x7fff75a4f9fc 0x7ffeadb7c80c 0x7ffeaea2fdac 0x7ffcd452017c

0000 7FFF FFFF F000

Stack

Text

Data

Heap

Shared
Libraries

40 0000

randomized

randomized

Carnegie Mellon

29

2. System-Level Protections Can Help

 Non-executable code segments
▪ In traditional x86, can mark region of memory as either “read-only” or “writeable”

▪ Can execute anything readable

▪ x86-64 added explicit “execute” permission

▪ Stack marked as non-executable

Stack after call to strcpy()

B

P stack frame

Q stack frame

B

exploit
code

paddata written
by strcpy()

Any attempt to execute this code will fail

Carnegie Mellon

30

3. Stack Canaries Can Help

 Idea
▪ Place special value (“canary”) on stack just beyond buffer

▪ Check for corruption before exiting function

 GCC Implementation
▪ -fstack-protector

▪ Now the default

RET ADDR

stack

(saved) rbp
rbp

rsp

rdi
char

name[]

CANARY

Carnegie Mellon

31

3. Stack Canaries Can Help

- %fs:0x28 is a read-only storage, storing a global canary.
- The global canary is initialized with a random value when the program is loaded.

copy_name() : before

copy_name() : after

Carnegie Mellon

32

Return-Oriented Programming Attacks

 Challenge (for hackers)
▪ Marking stack nonexecutable makes it hard to insert binary code

 Alternative Strategy
▪ Use existing code

▪ e.g., library code from stdlib (called “return-to-libc”)

▪ Chain those fragments to achieve overall desired outcome

 Construct “attack logic” from gadgets
▪ Gadget: any sequence of instructions ending in ret

▪ ret: an instruction encoded by single byte 0xc3

Return-oriented-programming (ROP)

Generalized, away more powerful version of return-to-libc

Gadget

A sequence of instructions embedded in avictim program

Ends with areturninstruction

Each gadgetemulates aspecific primitive operation
e.g.,add,mul,mov,jmp,etc.

ROP

Connect multiple gadgets together to perform arbitrary

operations

33

ROP Example #1 (simple)

Goal:StoreaconstantvalueC to amemoryaddressA

How would you setup the registers and stack?

Given the CPU context

* denotes the register value that the attacker can control

Register Value

eip *

esp 0xbfff0000

eax *

ebx *

Given gadgets

G1:

mov (%eax), %ebx

ret

34

Register Value

eip *

esp 0xbfff0000

eax 0

ebx 0

Given gadgets

G1

mov (%eax),

%ebx ret

|G2:

| mov

| ret

%eax, A

|G3:

| mov %ebx, C

| ret

Goal:StoreaconstantC to amemoryaddressA

How would you setup the registers and stack?

Given CPU context

ROP Example #2 (chain)

35

Carnegie Mellon

36

Summary

 Memory Layout

 Buffer Overflow
▪ Vulnerability

▪ Protection

▪ Code Injection Attack

▪ Return Oriented Programming

