Systems Programming

Machine-Level Programming Ill: Procedures

Byoungyoung Lee
Seoul National University
byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Objectives

m Basic functionality of the pairs

" push / pop
= call /ret

m Students should be able to identify the different components of a stack

" return address, arguments, saved registers, local variables
m Explain the difference between callee and caller save registers
m Explain how a stack permits functions to be called recursively / re-entrant

Today

m Procedures (Function)
" Mechanisms

Mechanisms in Procedures

m Passing control
" To beginning of procedure code
= Back to return point
m Passing data
" Procedure arguments
= Return value
m Memory management
= Allocate during procedure execution

" Deallocate upon return

m Mechanisms all implemented with
machine instructions

int Q(int 1)

{
int £t = 3*1i;
int v[10];

return vi[t];

Mechanisms in Procedures

P(..) {

m Passing control °

" To beginning of procedure code 3 .

® Back to return point ﬁgrln% E};; \\
m Passing data })

" Procedure arguments /\

= Return value 7
= Memory management in/©<iﬂt L)

= Allocate during procedure execution { int £ = 3%1:

" Deallocate upon return int v[10];

m Mechanisms all implemented with
machine instructions

_ return vi[t];

}

Mechanisms in Procedures

P(.) {
m Passing control)
" To beginning of procedure code v = 0(x);
= Back to return point int (y)
m Passing data \
" Procedure arguments
= Return value \ L
int Q(int 1)
m Memory management {
= Allocate during procedure execution int t\= 3*i;
= Deallocate upon return int vI\O0];
m Mechanisms all implemented with .
machine instructions return v[t];
}

Mechanisms in Procedures

m Passing control
" To beginning of procedure code
= Back to return point
m Passing data
® Procedure arguments
= Return value
m Memory management
" Allocate during procedure execution

® Deallocate upon return

m Mechanisms all implemented with
machine instructions

in

{

t Q(int 1)

int t = 3*1i;

int v[10];

}

return v[t];

Mechanisms in Procedures

m Passing control
" To beginning of procedure code

= Back to return point orint

Machine instructions implement the mechanisms,
but the choices are determined by designers.

These choices make up
Application Binary Interface (ABI).

machine instructions return v[t];
}

Today

m Procedures
=" Mechanisms
= Stack Structure
= Calling Conventions
= Passing control
= Passing data
= Managing local data

x86-64 Stack

m Memory regions

- Memory viewed as array of bytes.

- Different regions have different purposes.
m Stack

- Grow from high to low addresses

- Register %rsp points to the stack top

We will cover this memory layout laer!

p

Stack
bottom

%rsp
Stack \4‘
to

%rip —» Text

Data

Heap

Shared
Libraries

Stack

t

Virtual
Address

0x00000000

> e Oxc0000000

10

x86-64 Stack: Push

m Push [operand]
= Step #1: Decrease a stack top (i.e., %rsp)
= Step #2: Write an operand at the address given by the stack top

= Example: “pushg %rax” is the same as executing the following two instructions in order
= subq $8, %rsp;
= movq %rax, (%rsp)

= Example: “pushq S$5”
= subq S8, %rsp
= movq S5, (%rsp)

1

x86-64 Stack: Pop

m Pop [operand]
= Step #1: Write a value at the stack top to where the operand specifies
= Step #2: increase the stack top

" Example: “popg %rax” is the same as ...
= movq (%rsp), %rax
= addq $8, %rsp;

= Example: “popq (%rax)” is the same as ...
= movq (%rsp), %_tmp
= movg %_tmp, (%rax)
= addq S8, %rsp

12

PUSH — Push Word, Doubleword, or Quadword Onto the Stack

Opcode

Instruction Op/En 64-Bit Mode Compat/Leg Mode Description

FF /6 PUSH r/m16 M Valid Valid Push r/m16.
FF /6 PUSH r/m32 M N.E. Valid Push r/m32.
FF /6 PUSH r/m64 M Valid N.E. Push r/m64.
50+rw PUSH r16 O Valid Valid Push r16.
50+rd PUSH r32 O N.E. Valid Push r32.
50+rd PUSH r64 O Valid N.E. Push re4.
6A ib PUSH imm8 I Valid Valid Push imma8.
68 iw PUSH imm16 | Valid Valid Push imm16.
68 id PUSH imm32 | Valid Valid Push imm32.
OE PUSH CS Z0 Invalid Valid Push CS.

16 PUSH SS Z0 Invalid Valid Push SS.

1E PUSH DS Z0 Invalid Valid Push DS.

06 PUSH ES Z0 Invalid Valid Push ES.

OF AO PUSH FS Z0 Valid Valid Push FS.

OF A8 PUSH GS Z0 Valid Valid Push GS.

https://www.felixcloutier.com/x86/push

13

https://www.felixcloutier.com/x86/push

POP — Pop a Value From the Stack

Opcode
8F /0
8F /0
8F /0
58+ rw
58+ rd
58+ rd
1F

07

17

OF A1
OF A1
OF A1
OF A9
OF A9
OF A9

Instruction
POP r/m16
POP r/m32
POP r/m64
POP r16
POP r32
POP r64
POP DS
POP ES
POP SS
POP FS
POP FS
POP FS
POP GS
POP GS
POP GS

Op/En

M
M
M
O
0
0

Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0
Z0

64-Bit Mode

Valid
N.E.
Valid
Valid
N.E.
Valid
Invalid
Invalid
Invalid
Valid
N.E.
Valid
Valid
N.E.
Valid

Compat/Leg Mode
Valid
Valid
N.E.
Valid
Valid
N.E.
Valid
Valid
Valid
Valid
Valid
N.E.
Valid
Valid
N.E.

Description
Pop top of stack into m16; increment stack pointer.
Pop top of stack into m32; increment stack pointer.
Pop top of stack into mé4; increment stack pointer. Cannot encode 32-bit operand size.
Pop top of stack into r16; increment stack pointer.
Pop top of stack into r32; increment stack pointer.
Pop top of stack into ré4; increment stack pointer. Cannot encode 32-bit operand size.
Pop top of stack into DS; increment stack pointer.
Pop top of stack into ES; increment stack pointer.
Pop top of stack into SS; increment stack pointer.
Pop top of stack into FS; increment stack pointer by 16 bits.
Pop top of stack into FS; increment stack pointer by 32 bits.
Pop top of stack into FS; increment stack pointer by 64 bits.
Pop top of stack into GS; increment stack pointer by 16 bits.
Pop top of stack into GS; increment stack pointer by 32 bits.
Pop top of stack into GS; increment stack pointer by 64 bits.

https://www.felixcloutier.com/x86/pop

14

https://www.felixcloutier.com/x86/pop

Today

m Procedures
= Mechanisms
® Stack Structure

= Calling Conventions

15

Calling Conventions

m Calling conventions
= Describe how two different functions interact
= j.e., Describe the call interface
= How to pass parameters? (register or stack)

= Who takes care of old register values? (callee or

caller)

" The part of Application Binary Interface

m There are many variations: each compiler offers

various options

x86-64

Microsoft x64
calling

conventionl?!

vectorcall

System V
AMDG64 ABI[?8]

Windows
(Microsoft Visual
C++, GCC, Intel
C++ Compiler,
Delphi), UEFI

Windows
(Microsoft Visual
C++, Clang, ICC)

Solaris, Linux,[32]
BSD, macQOSs,
OpenVMS (GCC,
Intel C++
Compiler, Clang,
Delphi)

RCX/XMMO,
RDX/XMM1,
R8/XMM2,
R9/XMM3

RTL (C) Caller

RCX/[XYIMMO,
RDX/[XY]MM!1,

R8/[XYIMM?2, RTL (C) Caller
RY/[XYIMM3 +

[XYIMM4-5

RDI, RSI, RDX, RCX,
R8, R9, [XYZ]MMO- | RTL (C) Caller
7

Stack aligned on 16 bytes. 32
bytes shadow space on stack. The
specified 8 registers can only be
used for parameters 1 through 4.
For C++ classes, the hidden

this parameter is the first
parameter, and is passed in
RCX.[F1]

Extended from MS x64.[11]

Stack aligned on 16 bytes
boundary. 128 bytes red zone
below stack. The kernel interface
uses RDI, RSI, RDX, R10, R8 and
R9. In C++, this is the first

parameter.

https://en.wikipedia.org/w/index.php?title=X86 calling conventions

16

https://en.wikipedia.org/w/index.php?title=X86_calling_conventions

Passing control across functions

m Use stack to support call and return

m Procedure call: call label

= Step#l. Push return address on stack (= pushq %rip)
= Step#2. Jump to label (= jmp label)

m Procedure return: ret
= Step#l. Pop address from stack (= popq %tmp)
= Step#2. Jump to address (= jmp *%tmp)

= Return address:
= Address of the next instruction when the previous call was invoked

17

Passing data across functions

Registers Stack
m Passing first 6 arguments e Passing beyond first 6 arguments
srdi
® 0 0
3rsi A
Srdx Arg n
oz Increasing
orex oo o0 Addresses
%r8
%r9 Arg 8
Arg 7
m Return value

$rax

Example %rbp

%rsp, %rbp
%edi, —20(%rbp)
%esi, —2U(%rbp)
—20(%rbp), %edx
—24(%rbp), %eax
%edx, %eax
%eax, —-U4(%rbp)
—4(%rbp), %eax

int add(int x, int y) {
int res = x + y;

res; %rbp
3
int main(void) { e %rbb

add(1, 2); %rsL %rbp
¥ $2, %esi

. $1, %edi
call_convention.c add

%rbp

call_convention.s

gcc -0O0 -S call_convention.c -o call_convention.s

Example

m Do it yourself: Check the followings using GDB
" Check how the return address is pushed right after executing ‘call’
= Check where %rsp points right before executing ‘ret’
= When “main()” calls “add(1, 2)”, check how the parameter is handed over.

https://asciinema.org/a/Q67IckylgUcXrsKY7VTDeDEgB

20

Data storage for function

m Stack as function’s data storage
= Code must be “Reentrant”
= Multiple simultaneous instantiations of single procedure
= Will be covered more later
® Function needs some place to store state of each instantiation
= Arguments
= Local variables
= Return address
m Stack discipline
= Lifetime: a given procedure is active for a limited time
= From “the time it’s called” to “the time it returns”
= Return order: Callee should return before caller returns
m Stack is allocated by the unit of Frame

= Stack memory area for single procedure instantiation

21

Stack Frames

m Contents
® Return address
" Local storage (if needed)

m Management
= Space allocated when enter procedure
= “function prologue” code
" Deallocated when return
= “function epilogue” code

Frame Pointer: $rbp ——
(Optional)

Stack Pointer: $rsp ——

Previous
Frame

Frame for
proc

Stack “Top”

22

x86-64/Linux Stack Frame

m Stack Frame
= |ocal variables
= Saved register context
= Old frame pointer (optional)

m Caller’s stack frame includes

= Return address
= Pushed by call instruction

= Arguments for this call

Caller <
Frame

Frame pointer _
srbp—

(Optional)

Stack pointer

Srsp———

Arguments
7+

Return Addr

Old $rbp

Saved
Registers
+
Local
Variables

Arguments
(Optional)

23

Register Saving Conventions

m When procedure A calls B:
= A s the caller
= Bis the callee

m Can register be used for temporary storage?

" True: as long as registers are exclusively used by each function

m Conventions
= “Caller Saved”
= Caller saves temporary values in its frame before the call
= Caller restores them after the call
= “Callee Saved”
= Callee saves temporary values in its frame before using
= Callee restores them before returning to caller

24

