
1

Carnegie Mellon

Systems Programming

Introduction

Byoungyoung Lee

Seoul National University

byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.

Textbook coverage:

Ch 2: Representing and Manipulating Information

mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

2

Carnegie Mellon

Overview

 Introductions

 Big Picture
▪ Course theme

▪ Five realities

▪ How the course fits into the CS/ECE curriculum

 Academic integrity

 Logistics and Policies

3

Carnegie Mellon

About Instructor: Byoungyoung Lee

 Research Area: Hacking, Systems Security, Software Security

▪ Microsoft Research, Research Intern (2012)

▪ Google, Software Engineering Intern (2014)

▪ Purdue University, Assistant Professor (2016-2018)

▪ Seoul National University, Assistant/Associate Professor (2018-Current)

 Three times DEFCON CTF Finalist (2007,2009, and 2011)

 Internet Defense Prize by Facebook and USENIX (2015)

 DARPA Cyber Grand Challenge (CGC) Finalist (2016)

 Google ASPIRE Awards (2019)

 Found 100++ vulnerabilities from Windows kernel, Linux kernel, Chrome,
Firefox, etc.

4

Carnegie Mellon

TAs

 Youngjoo Lee

▪ youngjoo.lee@snu.ac.kr

▪ https://www.linkedin.com/in/youngjoo-lee-seoul/

 Jaeyoung Chung

▪ jjy600901@snu.ac.kr

▪ https://github.com/J-jaeyoung

 Cheolwoo Myung

▪ cwmyung@snu.ac.kr

▪ https://www.linkedin.com/in/cheolwoo-myung-2a82b914a/

mailto:youngjoo.lee@snu.ac.kr
https://www.linkedin.com/in/youngjoo-lee-seoul/
mailto:jjy600901@snu.ac.kr
https://github.com/J-jaeyoung
mailto:cwmyung@snu.ac.kr
https://www.linkedin.com/in/cheolwoo-myung-2a82b914a/

5

Carnegie Mellon

The Big Picture

6

Carnegie Mellon

Course Theme:
(Systems) Knowledge is Power!
 Systems Knowledge

▪ How hardware (processors, memories, disk drives, network infrastructure)
plus software (operating systems, compilers, libraries, network protocols)
combine to support the execution of application programs

▪ How you as a programmer can make the best use of these resources

 Useful outcomes from taking this course

▪ Become more effective programmers

▪ Able to understand and tune for program performance

▪ Able to find and eliminate bugs efficiently

▪ Prepare for later “systems” classes in CS & ECE

▪ Compilers, Operating Systems, Networks, Computer Architecture

▪ Embedded Systems, Storage Systems, Software/Systems Security, etc.

7

Carnegie Mellon

It’s Important to Understand How Things Work

 Why do I need to know this stuff?

▪ Abstraction is good, but don’t forget reality

 Most Computer Science/Engineering courses emphasize
abstraction

▪ Abstract data types

▪ Asymptotic analysis

 These abstractions have limits
▪ Abstraction doesn’t necessarily mean that you can ignore the details

▪ Need to understand details of underlying implementations

▪ Sometimes the abstract interfaces don’t provide the level of control or
performance you need

8

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

▪ Float’s: Yes!

▪ Int’s:

▪ 40000 * 40000 --> 1600000000

▪ 50000 * 50000 --> ?

 Example 2: Is (x + y) + z = x + (y + z)?
▪ Unsigned & Signed Int’s: Yes!

▪ Float’s:

▪ (1e20 + -1e20) + 3.14 --> 3.14

▪ 1e20 + (-1e20 + 3.14) --> ??
Source: xkcd.com/571

9

Carnegie Mellon

Computer Arithmetic

 Does not generate random values

▪ Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties

▪ Due to finiteness of representations

 Observation

▪ Need to understand which abstractions apply in which contexts

▪ Important issues for compiler writers and serious application programmers

10

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in assembly

▪ Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level execution
model
▪ Behavior of programs in presence of bugs

▪ High-level language models break down
▪ Undefined behavior w.r.t. the high-level language model

▪ Tuning program performance
▪ Understand optimizations done / not done by the compiler

▪ Implementing system software
▪ You will need to write machine-specific code
▪ Virtual memory, interrupt handling, etc.

– which needs a very precise control
▪ Reverse-engineering

▪ Understanding proprietary software
▪ Analyzing malware

11

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is Abstracted Resource

 Memory is a bounded resource
▪ It must be allocated and managed

▪ Many applications are memory dominated

 Memory referencing bugs are critical

▪ Due to space and time issues (spatial/temporal memory bugs)

 Memory performance is not uniform

▪ Cache and virtual memory effects can greatly affect program performance

▪ Adapting program to characteristics of memory system can lead to major
speed improvements

12

Carnegie Mellon

Memory Referencing Errors

 C and C++ do not provide memory protection

▪ Out of bounds array references

▪ Invalid pointer values

 Can lead to nasty bugs

▪ The same bug may show different errors

▪ Depending on compilers/systems/machines/etc.

▪ Why difficult?

▪ Distance in space: Corrupted object logically unrelated to one being accessed

▪ Distance in time: Effect of bug may be first observed long after it is generated

 How can I deal with this?

▪ Program in Java, Ruby, Python, ML, Go, Rust, …

▪ Understand what possible interactions may occur

▪ Use or develop tools to detect referencing errors (e.g. Valgrind, AddressSanitizer)

13

Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!
▪ Algorithmic asymptotic complexity may not matter much

 And even exact op count does not predict performance

▪ Easily see 10:1 performance range depending on how code written

▪ Must optimize at multiple levels

▪ algorithm, data representations, procedures, and loops

 Must understand system to optimize performance

▪ How programs compiled and executed

▪ How to measure program performance

▪ How to identify bottlenecks

14

Carnegie Mellon

Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns
▪ Including how multi-dimensional array is stepped through

void copyji(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];

}

81.8ms4.3ms
2.0 GHz Intel Core i7 Haswell

15

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

 They need to get data in and out
▪ I/O performances are critical to program reliability and performance

 They communicate with each other over networks

▪ Many system-level issues arise in presence of network

▪ Coping with unreliable media

▪ Cross platform compatibility

16

Carnegie Mellon

Course Perspective

 Most Systems Courses are Builder-Centric

▪ Computer Architecture

▪ Design pipelined processor in Verilog/Chisel

▪ Operating Systems

▪ Implement sample portions of operating system

▪ Compilers

▪ Write compiler for simple language

▪ Networking

▪ Implement and simulate network protocols

17

Carnegie Mellon

Course Perspective (Cont.)

 This Course is Programmer-Centric

▪ By knowing more about the underlying system, you can be more effective
as a programmer

▪ Enable you to

▪ Prepare yourself as a “true” system programmer

▪ Write programs that are more reliable and efficient

▪ Troubleshoot your program with systems knowledge

▪ Incorporate systems features in your program

– E.g., concurrency, signal handlers

18

Carnegie Mellon

Primary Textbook

 Computer Systems: A Programmer’s Perspective, Third Edition
(CS:APP3e), Pearson, 2016
▪ Randal E. Bryant and David R. O’Hallaron,

▪ https://csapp.cs.cmu.edu

▪ Electronic editions available

https://csapp.cs.cmu.edu/

19

Carnegie Mellon

Recommended reading

 The C Programming Language, Second Edition, Prentice Hall,
1988

 The Linux Programming Interface: A Linux and UNIX System
Programming Handbook, 1st Edition, No Starch Press (2010)

20

Carnegie Mellon

Course Outline: Programs and Data

 Topics

▪ Assembly language programs

▪ Representation of C control and data structures

▪ Includes aspects of architecture and compilers

21

Carnegie Mellon

Course Outline: The Memory Hierarchy

 Topics

▪ Memory technology, memory hierarchy, caches, disks, locality

▪ Includes aspects of architecture and OS

22

Carnegie Mellon

Course Outline: Virtual Memory

 Topics

▪ Virtual memory, address translation, dynamic storage allocation

▪ Includes aspects of architecture and OS

23

Carnegie Mellon

Course Outline: Exceptional Control Flow

 Topics

▪ Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

▪ Includes aspects of compilers, OS, and architecture

24

Carnegie Mellon

Course Outline: Networking, and Concurrency

 Topics

▪ High level and low-level I/O, network programming

▪ Internet services, Web servers

▪ concurrency, concurrent server design, threads

▪ I/O multiplexing with select

▪ Includes aspects of networking, OS, and architecture

25

Carnegie Mellon

Lab

 CTF

▪ Hacking the system!

▪ Problem solving

▪ 5-7 CTF problems

▪ Stack buffer overflow, heap overflow, use-after-free

▪ PLT/GOT, Fault handling, race condition,

 Programming Assignments
▪ Implementation assignments

▪ Assembly, Malloc, Shell, Debugger, Proxy

 All information will be available at the class homepage

▪ https://compsec.snu.ac.kr/class/systems-programming

https://compsec.snu.ac.kr/class/systems-programming

26

Carnegie Mellon

Lab: What you should know before
and what you will learn

 What you should know before

▪ C, C++, Python

▪ Data structures

 What you will learn
▪ x86 asm

▪ You will taste how the real-world systems are implemented!

▪ Tooling

▪ Linux

▪ gdb

▪ pwntools

27

Carnegie Mellon

Academic Integrity

 If you happen to do

▪ Cheating

▪ Plagiarism

 You will very likely get F
▪ And your mis-conduct will be reported to the student council

28

Carnegie Mellon

Plagiarism

 All projects should be done individually

▪ You should not directly copy the code from any other source

▪ Do not share your code!

▪ The one who shared the code will get the same penalty!

▪ We will run plagiarism detection software!

▪ You may discuss and help others, but you should write your own code

