Systems Programming

Introduction

Byoungyoung Lee

Textbook coverage:

Ch 2: Representing and Manipulating Information Seoul National University

byoungyoung@snu.ac.kr

https://lifeasageek.github.io

Lecture slides are prepared based on materials provided by CSAPP authors.


mailto:byoungyoung@snu.ac.kr
https://lifeasageek.github.io/

Overview

m Introductions
m Big Picture

® Course theme
" Five realities
" How the course fits into the CS/ECE curriculum

m Academic integrity
m Logistics and Policies



About Instructor: Byoungyoung Lee

Research Area: Hacking, Systems Security, Software Security
= Microsoft Research, Research Intern (2012)

" Google, Software Engineering Intern (2014)

® Purdue University, Assistant Professor (2016-2018)

= Seoul National University, Assistant/Associate Professor (2018-Current)

Three times DEFCON CTF Finalist (2007,2009, and 2011)
Internet Defense Prize by Facebook and USENIX (2015)
DARPA Cyber Grand Challenge (CGC) Finalist (2016)
Google ASPIRE Awards (2019)

Found 100++ vulnerabilities from Windows kernel, Linux kernel, Chrome,
Firefox, etc.



TAS

m Youngjoo Lee
® youngjoo.lee@snu.ac.kr

" https://www.linkedin.com/in/youngjoo-lee-seoul/

m Jaeyoung Chung

® jjy600901@snu.ac.kr
" https://github.com/J-jaeyoung

m Cheolwoo Myung
= cwmyung@snu.ac.kr

" https://www.linkedin.com/in/cheolwoo-myung-2a82b914a/



mailto:youngjoo.lee@snu.ac.kr
https://www.linkedin.com/in/youngjoo-lee-seoul/
mailto:jjy600901@snu.ac.kr
https://github.com/J-jaeyoung
mailto:cwmyung@snu.ac.kr
https://www.linkedin.com/in/cheolwoo-myung-2a82b914a/

The Big Picture



Course Theme:
(Systems) Knowledge is Power!

m Systems Knowledge

" How hardware (processors, memories, disk drives, network infrastructure)
plus software (operating systems, compilers, libraries, network protocols)
combine to support the execution of application programs

®" How you as a programmer can make the best use of these resources

m Useful outcomes from taking this course
" Become more effective programmers
= Able to understand and tune for program performance
= Able to find and eliminate bugs efficiently
® Prepare for later “systems” classes in CS & ECE
= Compilers, Operating Systems, Networks, Computer Architecture
= Embedded Systems, Storage Systems, Software/Systems Security, etc.



It’s Important to Understand How Things Work

m Why do | need to know this stuff?
" Abstraction is good, but don’t forget reality

m Most Computer Science/Engineering courses emphasize
abstraction
= Abstract data types
= Asymptotic analysis
m These abstractions have limits
= Abstraction doesn’t necessarily mean that you can ignore the details

" Need to understand details of underlying implementations

= Sometimes the abstract interfaces don’t provide the level of control or
performance you need



Great Reality #1:
Ints are not Integers, Floats are not Reals

m Example 1:Is x2 2 0?

" Float’s: Yes!

" |nt’s:

= 40000 * 40000 --> 1600000000

I..oj.--

7o

-z

w306 ... 1,307, ..

e
/F'—m
¥

L3767 ...-32,768...

275

<H

=32,767...-32.766 ...

o 5

=5

= 50000 * 50000 -->?

m Example 2:Is(x+y)+z = x+(y + 2)?
® Unsigned & Signed Int’s: Yes!

" Float’s:

= (1e20 +-1e20) + 3.14-->3.14
= 1e20 + (-1e20 + 3.14) --> ??

Source: xked.com/571 ¢



Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties

I (] I”

mathematical properties

" Due to finiteness of representations

m Cannot assume all “usua

m Observation

" Need to understand which abstractions apply in which contexts
" Important issues for compiler writers and serious application programmers



Great Reality #2:
You’ve Got to Know Assembly

m Chances are, you’ll never write programs in assembly
= Compilers are much better & more patient than you are
m But: Understanding assembly is key to machine-level execution
model
= Behavior of programs in presence of bugs
= High-level language models break down
= Undefined behavior w.r.t. the high-level language model
® Tuning program performance
= Understand optimizations done / not done by the compiler
" Implementing system software
= You will need to write machine-specific code
= Virtual memory, interrupt handling, etc.
— which needs a very precise control
= Reverse-engineering
= Understanding proprietary software
= Analyzing malware

10



Great Reality #3: Memory Matters

Random Access Memory Is Abstracted Resource

m Memory is a bounded resource
" |t must be allocated and managed
" Many applications are memory dominated

m Memory referencing bugs are critical

® Due to space and time issues (spatial/temporal memory bugs)

m Memory performance is not uniform
® Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

11



Memory Referencing Errors

m C and C++ do not provide memory protection
® Qut of bounds array references

= |nvalid pointer values

m Can lead to nasty bugs
" The same bug may show different errors
= Depending on compilers/systems/machines/etc.
= Why difficult?
= Distance in space: Corrupted object logically unrelated to one being accessed

= Distance in time: Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java, Ruby, Python, ML, Go, Rust, ...
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind, AddressSanitizer)

12



Great Reality #4: There’s more to
performance than asymptotic complexity

m Constant factors matter too!

® Algorithmic asymptotic complexity may not matter much

m And even exact op count does not predict performance
= Easily see 10:1 performance range depending on how code written
" Must optimize at multiple levels
= algorithm, data representations, procedures, and loops

m Must understand system to optimize performance
" How programs compiled and executed
= How to measure program performance

" How to identify bottlenecks

13



Memory System Performance Example

void copyij (int

src[2048] [2048],

void copyji (int

src[2048] [2048],

int dst[2048][2048]) int dst[2048][2048])
{ {
int i,3; int 1,3;
for (i = 0; i < 2048; i++) for (j = 0; j < 2048; j++)
for (j = 0; j < 2048; j++) for (i = 0; i < 2048; i++)
dst[i] []J] = src[i][]]: dst[i] [J] = src[i][]j];
} }
4.3ms 81.8ms

2.0 GHz Intel Core i7 Haswell

m Hierarchical memory organization

m Performance depends on access patterns

® Including how multi-dimensional array is stepped through




Great Reality #5:
Computers do more than execute programs

m They need to get data in and out
= |/O performances are critical to program reliability and performance

m They communicate with each other over networks
= Many system-level issues arise in presence of network
= Coping with unreliable media
= Cross platform compatibility

15



Course Perspective

m Most Systems Courses are Builder-Centric
= Computer Architecture
= Design pipelined processor in Verilog/Chisel
® QOperating Systems
= Implement sample portions of operating system
= Compilers
= Write compiler for simple language
= Networking
= Implement and simulate network protocols

16



Course Perspective (Cont.)

m This Course is Programmer-Centric
= By knowing more about the underlying system, you can be more effective
as a programmer

" Enable youto
= Prepare yourself as a “true” system programmer

= Write programs that are more reliable and efficient
= Troubleshoot your program with systems knowledge
= Incorporate systems features in your program

— E.g., concurrency, signal handlers

17



Primary Textbook

m Computer Systems: A Programmer’s Perspective, Third Edition
(CS:APP3e), Pearson, 2016
® Randal E. Bryant and David R. O’Hallaron,
" https://csapp.cs.cmu.edu

® Electronic editions available

18


https://csapp.cs.cmu.edu/

Recommended reading

m The C Programming Language, Second Edition, Prentice Hall,
1988

m The Linux Programming Interface: A Linux and UNIX System
Programming Handbook, 1st Edition, No Starch Press (2010)

19



Course Outline: Programs and Data

m Topics
= Assembly language programs
= Representation of C control and data structures
" Includes aspects of architecture and compilers

20



Course Outline: The Memory Hierarchy

m Topics
" Memory technology, memory hierarchy, caches, disks, locality
" Includes aspects of architecture and OS

21



Course Outline: Virtual Memory

m Topics
= Virtual memory, address translation, dynamic storage allocation
" Includes aspects of architecture and OS

22



Course Outline: Exceptional Control Flow

m Topics

= Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

" Includes aspects of compilers, OS, and architecture

23



Course Outline: Networking, and Concurrency

m Topics
= High level and low-level 1/O, network programming
® |nternet services, Web servers
® concurrency, concurrent server design, threads

|/0 multiplexing with select
" Includes aspects of networking, OS, and architecture



Lab

m CTF

" Hacking the system!

" Problem solving

m 5-7 CTF problems
= Stack buffer overflow, heap overflow, use-after-free
= PLT/GOT, Fault handling, race condition,

m Programming Assignments
" Implementation assignments
= Assembly, Malloc, Shell, Debugger, Proxy

m All information will be available at the class homepage

" https://compsec.snu.ac.kr/class/systems-programming

25


https://compsec.snu.ac.kr/class/systems-programming

Lab: What you should know before
and what you will learn

m What you should know before
= C, C++, Python
® Data structures

m What you will learn
" x86 asm
" You will taste how the real-world systems are implemented!
" Tooling
= Linux
= gdb
= pwntools

26



Academic Integrity

m If you happen to do
" Cheating
= Plagiarism

m You will very likely get F

" And your mis-conduct will be reported to the student council

27



Plagiarism

m All projects should be done individually

You should not directly copy the code from any other source

Do not share your code!
= The one who shared the code will get the same penalty!

We will run plagiarism detection software!

You may discuss and help others, but you should write your own code

28



