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m Big Picture

® Course theme
" Five realities
" How the course fits into the CS/ECE curriculum

m Academic integrity
m Logistics and Policies
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The Big Picture



Course Theme:
(Systems) Knowledge is Power!

m Systems Knowledge

" How hardware (processors, memories, disk drives, network infrastructure)
plus software (operating systems, compilers, libraries, network protocols)
combine to support the execution of application programs

®" How you as a programmer can make the best use of these resources

m Useful outcomes from taking this course
" Become more effective programmers
= Able to understand and tune for program performance
= Able to find and eliminate bugs efficiently
® Prepare for later “systems” classes in CS & ECE
= Compilers, Operating Systems, Networks, Computer Architecture
= Embedded Systems, Storage Systems, Software/Systems Security, etc.



It’s Important to Understand How Things Work

m Why do | need to know this stuff?
" Abstraction is good, but don’t forget reality

m Most Computer Science/Engineering courses emphasize
abstraction
= Abstract data types
= Asymptotic analysis
m These abstractions have limits
= Abstraction doesn’t necessarily mean that you can ignore the details

" Need to understand details of underlying implementations

= Sometimes the abstract interfaces don’t provide the level of control or
performance you need



Great Reality #1:
Ints are not Integers, Floats are not Reals

m Example 1:Is x2 2 0?

" Float’s: Yes!

" |nt’s:

= 40000 * 40000 --> 1600000000
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= 50000 * 50000 -->?

m Example 2:Is(x+y)+z = x+(y + 2)?
® Unsigned & Signed Int’s: Yes!

" Float’s:

= (1e20 +-1e20) + 3.14-->3.14
= 1e20 + (-1e20 + 3.14) --> ??

Source: xked.com/571 ¢



Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties

I (] I”

mathematical properties

" Due to finiteness of representations

m Cannot assume all “usua

m Observation

" Need to understand which abstractions apply in which contexts
" Important issues for compiler writers and serious application programmers



Great Reality #2:
You’ve Got to Know Assembly

m Chances are, you’ll never write programs in assembly
= Compilers are much better & more patient than you are
m But: Understanding assembly is key to machine-level execution
model
= Behavior of programs in presence of bugs
= High-level language models break down
= Undefined behavior w.r.t. the high-level language model
® Tuning program performance
= Understand optimizations done / not done by the compiler
" Implementing system software
= You will need to write machine-specific code
= Virtual memory, interrupt handling, etc.
— which needs a very precise control
= Reverse-engineering
= Understanding proprietary software
= Analyzing malware
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Great Reality #3: Memory Matters

Random Access Memory Is Abstracted Resource

m Memory is a bounded resource
" |t must be allocated and managed
" Many applications are memory dominated

m Memory referencing bugs are critical

® Due to space and time issues (spatial/temporal memory bugs)

m Memory performance is not uniform
® Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements
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Memory Referencing Errors

m C and C++ do not provide memory protection
® Qut of bounds array references

= |nvalid pointer values

m Can lead to nasty bugs
" The same bug may show different errors
= Depending on compilers/systems/machines/etc.
= Why difficult?
= Distance in space: Corrupted object logically unrelated to one being accessed

= Distance in time: Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java, Ruby, Python, ML, Go, Rust, ...
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind, AddressSanitizer)
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Great Reality #4: There’s more to
performance than asymptotic complexity

m Constant factors matter too!

® Algorithmic asymptotic complexity may not matter much

m And even exact op count does not predict performance
= Easily see 10:1 performance range depending on how code written
" Must optimize at multiple levels
= algorithm, data representations, procedures, and loops

m Must understand system to optimize performance
" How programs compiled and executed
= How to measure program performance

" How to identify bottlenecks
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Memory System Performance Example

void copyij (int

src[2048] [2048],

void copyji (int

src[2048] [2048],

int dst[2048][2048]) int dst[2048][2048])
{ {
int i,3; int 1,3;
for (i = 0; i < 2048; i++) for (j = 0; j < 2048; j++)
for (j = 0; j < 2048; j++) for (i = 0; i < 2048; i++)
dst[i] []J] = src[i][]]: dst[i] [J] = src[i][]j];
} }
4.3ms 81.8ms

2.0 GHz Intel Core i7 Haswell

m Hierarchical memory organization

m Performance depends on access patterns

® Including how multi-dimensional array is stepped through




Great Reality #5:
Computers do more than execute programs

m They need to get data in and out
= |/O performances are critical to program reliability and performance

m They communicate with each other over networks
= Many system-level issues arise in presence of network
= Coping with unreliable media
= Cross platform compatibility
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Course Perspective

m Most Systems Courses are Builder-Centric
= Computer Architecture
= Design pipelined processor in Verilog/Chisel
® QOperating Systems
= Implement sample portions of operating system
= Compilers
= Write compiler for simple language
= Networking
= Implement and simulate network protocols
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Course Perspective (Cont.)

m This Course is Programmer-Centric
= By knowing more about the underlying system, you can be more effective
as a programmer

" Enable youto
= Prepare yourself as a “true” system programmer

= Write programs that are more reliable and efficient
= Troubleshoot your program with systems knowledge
= Incorporate systems features in your program

— E.g., concurrency, signal handlers
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Primary Textbook

m Computer Systems: A Programmer’s Perspective, Third Edition
(CS:APP3e), Pearson, 2016
® Randal E. Bryant and David R. O’Hallaron,
" https://csapp.cs.cmu.edu

® Electronic editions available
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Recommended reading

m The C Programming Language, Second Edition, Prentice Hall,
1988

m The Linux Programming Interface: A Linux and UNIX System
Programming Handbook, 1st Edition, No Starch Press (2010)
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Course Outline: Programs and Data

m Topics
= Assembly language programs
= Representation of C control and data structures
" Includes aspects of architecture and compilers
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Course Outline: The Memory Hierarchy

m Topics
" Memory technology, memory hierarchy, caches, disks, locality
" Includes aspects of architecture and OS
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Course Outline: Virtual Memory

m Topics
= Virtual memory, address translation, dynamic storage allocation
" Includes aspects of architecture and OS
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Course Outline: Exceptional Control Flow

m Topics

= Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

" Includes aspects of compilers, OS, and architecture
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Course Outline: Networking, and Concurrency

m Topics
= High level and low-level 1/O, network programming
® |nternet services, Web servers
® concurrency, concurrent server design, threads

|/0 multiplexing with select
" Includes aspects of networking, OS, and architecture



Lab

m CTF

" Hacking the system!

" Problem solving

m 5-7 CTF problems
= Stack buffer overflow, heap overflow, use-after-free
= PLT/GOT, Fault handling, race condition,

m Programming Assignments
" Implementation assignments
= Assembly, Malloc, Shell, Debugger, Proxy

m All information will be available at the class homepage

" https://compsec.snu.ac.kr/class/systems-programming
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Lab: What you should know before
and what you will learn

m What you should know before
= C, C++, Python
® Data structures

m What you will learn
" x86 asm
" You will taste how the real-world systems are implemented!
" Tooling
= Linux
= gdb
= pwntools
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Academic Integrity

m If you happen to do
" Cheating
= Plagiarism

m You will very likely get F

" And your mis-conduct will be reported to the student council
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Plagiarism

m All projects should be done individually

You should not directly copy the code from any other source

Do not share your code!
= The one who shared the code will get the same penalty!

We will run plagiarism detection software!

You may discuss and help others, but you should write your own code
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